首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria belonging to the genus Bradyrhizobium nodulate various leguminous woody plants and herbs, including economically important crops such as soybean, peanut and cowpea. Here we analysed 39 Bradyrhizobium strains originating from root nodules of the leguminous trees and crops Acacia saligna, Faidherbia albida, Erythrina brucei, Albizia gummifera, Millettia ferruginea, Cajanus cajan, Vigna unguiculata and Phaseolus vulgaris, growing in southern Ethiopia. Multilocus sequence analyses (MLSA) of the 16S rRNA, glnII, recA, gyrB and dnaK genes and the ITS region grouped the test strains into seven well-supported genospecies (I–VII), six of which occupied distinct positions excluding all hitherto defined Bradyrhizobium species. Analyses of the nodA, nodC and nifH genes suggested different evolutionary history of the chromosomal and symbiosis-related genes. Our study corroborates earlier findings that Ethiopia is a hotspot for rhizobial biodiversity, justifying further search for novel strains from this region and calling for intensified research on the ecology and biochemistry of these organisms.  相似文献   

2.
Leguminous trees play an important role in agroforestry in Ethiopia, but studies of their rhizobial symbionts are scarce. In earlier studies, we surveyed natural nodulation of native leguminous trees growing in different agro-ecological zones in Southern Ethiopia, isolated 400 rhizobia, and characterized them based on different phenotypic and genotypic methods. In the present study we characterized 18 strains belonging to the genus Mesorhizobium, isolated from nodules of Acacia abyssinica, A. senegal, A. tortilis and Sesbania sesban. Phylogenetic analysis of nearly full-length 16S rRNA gene grouped the test strains into three distinct clades separated from all currently recognized Mesorhizobium species. Three divergent strains formed separate branches while the other 15 strains formed three distinct groups, genospecies I-III. Grouping of the isolates under study based on the house-keeping genes recA, gyrB, rpoB and gltA were consistent and in agreement with that of 16S rRNA. Similarly phylogenetic relationships based on the symbiosis-related genes nodC, nodA and nifH were generally similar to those shown by the core genes, suggesting that these Acacia and Sesbania symbionts have a long history of separate evolution within Mesorhizobium. Cross inoculation experiments demonstrated a large variation in the ability of the test strains to elicit effective nodules. The Sesbania isolates, occupying a distinct clade in the nodC phylogenetic tree, formed effective nodules only with this host legume. The study strongly suggests that this collection of Mesorhizobium strains comprises several new species, and also indicates the role of the symbiotic genes in determining the host range of these bacteria.  相似文献   

3.
A collection of 18 previously unstudied strains isolated from root nodules of Genista germanica (German greenweed) grown in southeast Poland was evaluated for the level of genetic diversity using the BOX-PCR technique and the phylogenetic relationship based on both core (16S rRNA, dnaK, ftsA, glnII, gyrB, recA, rpoB) and nodulation (nodC and nodZ) gene sequences. Each of the 18 G. germanica root nodule isolates displayed unique BOX-PCR patterns, indicating their high level of genomic heterogeneity. Based on the comparative 16S rDNA sequence analysis, 12 isolates were affiliated to the Bradyrhizobium genus and the other strains were most similar to Rhizobium species. Phylogenetic analysis of the core gene sequences indicated that the studied Bradyrhizobium bacteria were most closely related to Bradyrhizobium japonicum, whereas Rhizobium isolates were most closely related to Rhizobium lusitanum and R. leguminosarum. The phylogenies of nodC and nodZ for the Rhizobium strains were incongruent with each other and with the phylogenies inferred from the core gene sequences. All Rhizobium nodZ gene sequences acquired in this study were grouped with the sequences of Bradyrhizobium strains. Some of the studied Rhizobium isolates were placed in the nodC phylogenetic tree together with reference Rhizobium species, while the others were closely related to Bradyrhizobium bacteria. The results provided evidence for horizontal transfer of nodulation genes between Bradyrhizobium and Rhizobium. However, the horizontal transfer of nod genes was not sufficient for Rhizobium strains to form nodules on G. germanica roots, suggesting that symbiotic genes have to be adapted to the bacterial genome.  相似文献   

4.
In this work, we analyzed the diversity of seventy-six bacteria isolated from Pea and faba bean nodules in two regions of Morocco. The molecular diversity was realized using the analysis of the sequences of 16S rRNA and six housekeeping genes (recA, glnII, atpD, dnaK, rpoB and gyrB) and two symbiotic genes (nodA and nodC).The phylogeny of the 16S rRNA gene sequences revealed that all strains belong to the genus Rhizobium, being related to the type strains of R. leguminosarum, R. laguerreae, R. indigoferae, R. anhuiense and R. acidisoli. The housekeeping genes phylogenies showed that some strains formed a subclade distinct from the rhizobial species that usually nodulate Vicia faba and Pisum sativum which are closely related to R. acidisoli FH23 with sequence similarity of 98.3%.Analysis of the PGPR activities of the different isolates showed that the strains related to R. laguerreae were able to solubilize phosphates and to produce siderophores and auxin phytohormone. However, R. acidisoli strain F40D2 was unable to solubilize phosphates although they produce siderophores and IAA.The phylogenetic analysis of the nodA and nodC sequences showed that all isolated strains were closely related with the strains of symbiovar viciae. The nodulation tests confirmed the ability to nodulate V. faba and P. sativum but not Cicer arietinum or Phaseolus vulgaris. Hence, in Morocco P. sativum is nodulated by R. laguerreae; whereas V. faba is nodulated by R. laguerreae and the symbiovar viciae of R. acidisoli which has been not previously described in this species.  相似文献   

5.
Out of 70 bacterial strains isolated from root nodules of Lupinus albus and L. angustifolius grown in the soils from the Maamora forest in Morocco, 56 isolates possessed the nodC symbiotic gene, as determined by nodC-PCR, and they were able to renodulate their original hosts.The phenotypic analysis showed that many strains had great potential for using different carbon compounds and amino acids as sole carbon and nitrogen sources. The majority of strains grew in media with pH values between 6 and 8. Only one strain isolated from L. angustifolius was able to grow at low pH values, whereas fourteen strains nodulating L. albus grew at pH 5. No strain developed at 40 °C, and eighteen strains grew at NaCl concentrations as high as 855 mM. A total of 17 strains solubilized phosphates, whereas 20 produced siderophores and seven produced IAA. Only three strains, Lalb41, Lang10 and Lang16, possessed all three plant growth promoting activities. The strains were grouped into eight genetic groups by rep-PCR. Analysis of the 16S rRNA sequences of eight strains representing the different groups showed that they were members of the genus Bradyrhizobium. The sequencing of the five housekeeping genes atpD, glnII, dnaK, gyrB and recA, from the eight representative strains, and the phylogenetic analysis of their concatenated sequences, showed that both plants were nodulated by different Bradyrhizobium species. Accordingly, two strains, Lalb41 and Lalb5.2, belonged to B. lupini, whereas two strains, Lalb2 and Lang17.2, were affiliated to B. cytisi, and one strain, Lang2, was close to B. canariense. The fourth group of strains, Lalb25, Lang14.3 and Lang8.3, which had similarity values of less than 96% with their closest named species, B. cytisi, may belong to two new genospecies in the genus Bradyrhizobium. All the strains nodulated Lupinus cosentinii, L. luteus, Retama sphaerocarpa, R. monosperma, Chamaecytisus albus, but not Vachellia gummifera, Phaseolus vulgaris or Glycine max. The nodA, nodC and nifH sequence analyses and their phylogeny confirmed that the strains isolated from the two lupines were members of the symbiovar genistearum.  相似文献   

6.
A total of 155 nodule isolates that originated from seven sites in Northwest China were characterized by PCR-RFLP of the 16S rRNA gene and sequence analysis of multiple core genes (16S rRNA, recA, atpD, and glnII) in order to investigate the diversity and biogeography of Glycine soja-nodulating rhizobia. Among the isolates, 80 were Ensifer fredii, 19 were Ensifer morelense, 49 were Rhizobium radiobacter, and 7 were putative novel Rhizobium species. The phylogenies of E. fredii and E. morelense isolates in a concatenate tree (assembly of all housekeeping genes) were generally consistent with those in individual gene trees. However, incongruence was found in the phylogenies of the different genes of Rhizobium isolates, indicating that lateral transfer or recombination possibly occurred in these gene loci. Despite their species identity, all the isolates in this study formed a single lineage related to E. fredii in nodAand nifH gene phylogenies, which also indicated that the symbiotic genes were laterally transferred between different species. Biogeographic patterns were found at the species and strain genomic type levels, as revealed by BOXA1R fingerprinting, demonstrating that the evolution of rhizobial populations in different geographic locations was related to soil types, altitude and spatial effects. This study is the first to report that E. morelense, R. radiobacter, and Rhizobium sp. are microsymbionts of G. soja, as well as showing that the diversity of G. soja rhizobia is enhanced and new rhizobia have evolved in Northwest China.  相似文献   

7.
We isolated 33 nodule bacteria from the legume Alhagi sparsifolia growing in the desert of northwest China. They fell into three groups by restriction analysis of their rrs (small subunit ribosomal RNA) genes, and these, together with dnaK and dnaJ genes, were sequenced from representative isolates to assess their taxonomic position by phylogenetic analysis. The bacteria in each group belonged to different lineages that might represent three different new Mesorhizobium species, two of which form a novel clade very distinct from other species in the genus. Most A. sparsifolia symbionts harboured closely related nodA and nodC genes forming new lineages. The presence of these closely related symbiosis genes in various genomic backgrounds and the incongruence observed between the different gene phylogenies indicate a history of horizontal gene transfer of symbiosis genes between the A. sparsifolia symbionts.  相似文献   

8.
Two bacterial strains isolated from root nodules of soybean were characterized phylogenetically as members of a distinct group in the genus Ensifer based on 16S rRNA gene comparisons. They were also verified as a separated group by the concatenated sequence analyses of recA, atpD and glnII (with similarities ≤93.9% to the type strains for defined species), and by the average nucleotide identities (ANI) between the whole genome sequence of the representative strain CCBAU 251167T and those of the closely related strains in Ensifer glycinis and Ensifer fredii (90.5% and 90.3%, respectively). Phylogeny of symbiotic genes (nodC and nifH) grouped these two strains together with some soybean-nodulating strains of E. fredii, E. glycinis and Ensifer sojae. Nodulation tests indicated that the representative strain CCBAU 251167T could form root nodules with capability of nitrogen fixing on its host plant and Glycine soja, Cajanus cajan, Vigna unguiculata, Phaseolus vulgaris and Astragalus membranaceus, and it formed ineffective nodules on Leucaena leucocephala. Strain CCBAU 251167T contained fatty acids 18:1 ω9c, 18:0 iso and 20:0, differing from other related strains. Utilization of l-threonine and d-serine as carbon source, growth at pH 6.0 and intolerance of 1% (w/v) NaCl distinguished strain CCBAU 251167T from other type strains of the related species. The genome size of CCBAU 251167T was 6.2 Mbp, comprising 7,581 predicted genes with DNA G+C content of 59.9 mol% and 970 unique genes. Therefore, a novel species, Ensifer shofinae sp. nov., is proposed, with CCBAU 251167T (=ACCC 19939T = LMG 29645T) as type strain.  相似文献   

9.
Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria. Eleven genotypic groups were distinguished based on the combined PCR/RFLP of 16S rRNA, 16S–23S rRNA intergenic spacer and symbiotic (nodC and nodD-F) genes and further confirmed by multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and rpoB), the 16S rRNA gene and the nodulation genes nodC and nodD. Of the 11 genotypes, 5 were dominant and 2 were the most represented. Most of the strains shared high nodD gene sequence similarity with Rhizobium leguminosarum sv. viciae; their nodC sequences were similar to both Rhizobium leguminosarum and Rhizobium laguerreae. Sequence analyses of the 16S–23S rRNA intergenic spacer showed that all the new strains were phylogenetically related to those described from Vicia sativa and V. faba in several African, European, American and Asian countries, with which they form a group related to Rhizobium leguminosarum. Phylogenetic analysis based on MLSA of 16S rRNA, recA, atpD and rpoB genes allowed the affiliations of strain AM11R to Rhizobium leguminosarum sv. viciae and of strains EB1 and ES8 to Rhizobium laguerreae. In addition, two separate clades with <97% similarity may represent two novel genospecies within the genus Rhizobium.  相似文献   

10.
11.
Inga (Caesalpinioideae) is the type genus of the Ingeae tribe in the mimosoid clade. It comprises about 300 species, all trees or treelets, and has an exclusively neotropical distribution, with Brazil as its main center of diversity. In this study, we analyzed the diversity of 40 strains of rhizobia isolated from root nodules collected from ten species of Inga belonging to different types of vegetation in Brazil. Sequences of their housekeeping genes (dnaK, recA, rpoB, gyrB and glnII), 16S rRNA genes, internal transcribed spacer (ITS) regions, as well as their symbiosis-essential genes (nodC and nifH) were used to characterize them genetically. The ability of the rhizobia to form nodules on Inga spp., and on the promiscuous legume siratro (Macroptilium atropurpureum) was also evaluated. A multilocus sequence analysis (MLSA) combined with an analysis of the ITS region showed that the isolates were distributed into four main groups (A-D) within the large genus Bradyrhizobium. Analysis of the nodC and nifH genes showed that the isolates formed a separate branch from all described species of Bradyrhizobium, except for B. ingae. Most of the tested isolates formed nodules on siratro and all isolates tested nodulated Inga spp. Our results suggest a unique co-evolutionary history of Bradyrhizobium and Inga and demonstrate the existence of potential new species of microsymbionts nodulating this important and representative genus of leguminous tree from the Caesalpinioideae mimosoid clade.  相似文献   

12.
The phylogeny of 16 isolates from root nodules of Genista germanica, Genista tinctoria, Cytisus ratisbonensis, and Cytisus scoparius growing in southeast Poland was estimated by comparative sequence analysis of core (16S rDNA, atpD, glnII, recA) and symbiosis-related (nodC, nodZ, nifH) genes. All the sequences analyzed placed the studied rhizobia in the genus Bradyrhizobium. Phylogenetic analysis of individual and concatenated housekeeping genes showed that the Genisteae microsymbionts form a homogeneous group with Bradyrhizobium japonicum strains. The phylogeny of nodulation and nitrogen fixation genes indicated a close relationship of the examined rhizobia with B. japonicum, Bradyrhizobium canariense, Bradyrhizobium cytisi, Bradyrhizobium rifense and Bradyrhizobium lupini strains infecting other plants of the tribe Genisteae. For the first time, the taxonomic position of G. germanica and C. ratisbonensis rhizobia, inferred from multigenic analysis, is described. The results of the phylogenetic analysis based on the protein-coding gene sequences presented in this study also indicate potential pitfalls concerning the choice of marker and reference strains, which may lead to conflicting conclusions in species delineation.  相似文献   

13.
Adzuki bean (Vigna angularis) is an important legume crop native to China, but its rhizobia have not been well characterized. In the present study, a total of 60 rhizobial strains isolated from eight provinces of China were analyzed with amplified 16S rRNA gene RFLP, IGS-RFLP, and sequencing analyses of 16S rRNA, atpD, recA, and nodC genes. These strains were identified as genomic species within Rhizobium, Sinorhizobium, Mesorhizobium, Bradyrhizobium, and Ochrobactrum. The most abundant groups were Bradyrhizobium species and Sinorhizobium fredii. Diverse nodC genes were found in these strains, which were mainly co-evolved with the housekeeping genes, but a possible lateral transfer of nodC from Sinorhizobium to Rhizobium was found. Analyses of the genomic and symbiotic gene backgrounds showed that adzuki bean shared the same rhizobial gene pool with soybean (legume native to China) and the exotic Vigna species. All of these data demonstrated that nodule formation is the interaction of rhizobia, host plants, and environment characters. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Nodulation abilities of bacteria in the subclasses Gammaproteobacteria and Betaproteobacteria on black locust (Robinia pseudoacacia) were tested. Pseudomonas sp., Burkholderia sp., Klebsiella sp., and Paenibacillus sp. were isolated from surface-sterilized black locust nodules, but their nodulation ability is unknown. The aims of this study were to determine if these bacteria are symbiotic. The species and genera of the strains were determined by RFLP analysis and DNA sequencing of 16S rRNA gene. Inoculation tests and histological studies revealed that Pseudomonas sp. and Burkholderia sp. formed nodules on black locust and also developed differentiated nodule tissue. Furthermore, a phylogenetic analysis of nodA and a BLASTN analysis of the nodC, nifH, and nifHD genes revealed that these symbiotic genes of Pseudomonas sp. and Burkholderia sp. have high similarities with those of rhizobial species, indicating that the strains acquired the symbiotic genes from rhizobial species in the soil. Therefore, in an actual rhizosphere, bacterial diversity of nodulating legumes may be broader than expected in the Alpha-, Beta-, and Gammaproteobacteria subclasses. The results indicate the importance of horizontal gene transfer for establishing symbiotic interactions in the rhizosphere.  相似文献   

15.
A collection of 160 isolates of rhizobia nodulating Phaseolus vulgaris in three geographical regions in Tunisia was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-amplified 16S rDNA, nifH and nodC genes. Nine groups of rhizobia were delineated: Rhizobium gallicum biovar (bv.) gallicum, Rhizobium leguminosarum bv. phaseoli and bv. viciae, Rhizobium etli bv. phaseoli, Rhizobium giardinii bv. giardinii, and four groups related to species of the genus Sinorhizobium, Sinorhizobium meliloti, Sinorhizobium medicae and Sinorhizobium fredii. The most abundant rhizobial species were R. gallicum, R. etli, and R. leguminosarum encompassing 29–20% of the isolates each. Among the isolates assigned to R. leguminosarum, two-thirds were ineffective in nitrogen fixation with P. vulgaris and harbored a symbiotic gene typical of the biovar viciae. The S. fredii-like isolates did not nodulate soybean plants but formed numerous effective nodules on P. vulgaris. Comparison of nodC gene sequences showed that their symbiotic genotype was not related to that of S. fredii, but to that of the S. fredii-like reference strain GR-06, which was isolated from a bean plant grown in a Spanish soil. An additional genotype including 16% of isolates was found to be closely related to species of the genus Agrobacterium. However, when re-examined, these isolates did not nodulate their original host.  相似文献   

16.
From a total of 80 bacterial strains isolated from root nodules of Lupinus angustifolius grown wild in the North-Eastern Algerian region of El Tarf, 64 plant host-nodulating strains clustered into 17 random amplified polymorphic DNA (RAPD) fingerprinting groups. The nearly complete 16S rRNA gene sequence from the representative strain of each group revealed they were closely related to members of the genus Bradyrhizobium of the Alphaproteobacteria, but their affiliation at the species level was not clear. Sequencing of the housekeeping genes glnII and recA, and their concatenated phylogenetic analysis, showed that 12 strains belong to B. lupini, other 2 strains affiliated with B. diazoefficiens and that 1 strain was closely related to B. japonicum. The remaining two strains showed similarity values ≤95% with B. cytisi and could represent new lineages within the genus Bradyrhizobium. Sequencing of the symbiotic nodC gene from 4 selected bradyrhizobial strains showed they were all similar to those of the species included in symbiovar genistearum.  相似文献   

17.
Aims: To assess the phenotypic, symbiotic and genotypic diversity scope of Mesorhizobium spp. strains associated with Acacia seyal (Del.) isolated from different agro‐ecological zones in Senegal, and uses of susceptible microbial inoculum in a reafforestation process. Methods and Results: A polyphasic approach including phenotypic and genotypic techniques was used to study the diversity and their relationships with other biovars and species of rhizobia. The geographical origins of the strains have limited effect on their phylogenetic and phenotypic classification. Nodulation tests indicated promiscuity of the strains studied, because they were capable of nodulating six woody legume species (Acacia auriculiformis, Acacia senegal, A. seyal, Acacia tortilis ssp. raddiana, Leucaena leucocephala and Prosopis juliflora). Sequencing and phylogenetic analyses of nodA, nodC and nifH genes pointed out that in contrast to nodA gene, the phylogenies of nodC and nifH genes were not consistent with that of 16S rRNA, indicating that these genes of the A. seyal‐nodulating rhizobia might have different origins. Microbial inoculation on nonsterile soil had significant effect on the nodules number and the growth of the seedlings, indicating that these strains of rhizobia might be used as inoculum. Conclusions: The results indicated that A. seyal is a nonselective host that can establish effective symbiosis with Mesorhizobium spp. strains from diverse genomic backgrounds and that the selected A. seyal‐nodulating rhizobia could enhance plant growth. Significance and Impact of the Study: These results showed the important role that A. seyal could play in the improvement of reafforestation process as a promiscuous host, which can establish effective symbiosis with rhizobia from diverse genomic backgrounds.  相似文献   

18.
Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10R. fredii strains withRhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. TheR. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated byR. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and commonnod genes,nodDABC; the soybean cultivar specificity gene,nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence fromR. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes,nolBTUVWX, was monomorphic. Using antisera against whole cells of threeR. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a singleR. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences amongR. fredii strains were as great as those between NGR234 andR. fredii, our results confirm that NGR234 has a distinctly wider host range thanR. fredii.  相似文献   

19.
The genus Chamaecrista comprises more than 330 species which are mainly distributed across tropical America, especially in Brazil (256 spp.), the main center of radiation. In this study, nodulation of herbaceous Chamaecrista species that are commonly found growing in different vegetation types in the north eastern Brazilian state of Bahia was assessed together with the diversity of rhizobia isolated from their root nodules. Genetic characterization of the isolates was performed using molecular markers to examine the phylogeny of their “core” (16S rRNA, ITS, recA, glnII, dnaK and gyrB) and symbiosis-related (nifH, nodC) genomes. Nodule morphology, anatomy and ultrastructure were also examined, as was the capacity of the isolates to form nodules on Chamaecrista desvauxii and siratro (Macroptilium atropurpureum). Analysis of 16S rRNA gene sequences demonstrated that the isolates belonged to seven clusters within the genus Bradyrhizobium, and more detailed analyses using sequences of the ITS region and concatenated housekeeping genes grouped the Chamaecrista rhizobia by vegetation type and plant species. These analyses also suggested some potentially novel Bradyrhizobium species, which was corroborated by analyses of their nifH and nodC sequences, as these formed separated branches from all Bradyrhizobium type strains. All the 47 strains tested produced effective nodules on C. desvauxii but none on siratro. Chamaecrista nodules are herein described for the first time in detail: they are indeterminate and structurally similar to others described in the Caesalpinioideae, with infection threads in the invasion and nitrogen fixation zones, and with both infected and uninfected (interstitial) cells in the nitrogen fixation zone.  相似文献   

20.
The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99–100% in the case of nodAC and nifH genes, and 98–99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar “glycyphyllae”, based on nodA and nodC genes sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号