首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

2.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.  相似文献   

3.
During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells.  相似文献   

4.
We have used DNaseI and micrococcal nuclease sensitivity assays to determine the chromatin structures in the control regions of the Chlamydomonas reinhardtii HSP70A and RBCS2 genes. Both genes appear to be organized into nucleosome arrays, which exhibit shorter nucleosome repeat lengths than bulk chromatin. In HSP70A we have identified up to four confined DNaseI hypersensitive sites, three of them localize to the promoter region, a fourth one to the fourth intron. Three hypersensitive sites map close to putative heat shock elements, one close to a CCAAT-box. All hypersensitive sites are located to internucleosomal linkers. Alternative nucleosome positions at half-nucleosomal phasing were constitutively detected in the HSP70A promoter region, indicating local chromatin remodelling. Upon heat shock, dramatic changes in the nucleosome structure of HSP70A were detected that particularly affected the promoter, but also a region within the fourth intron. In contrast, light induction entailed no change in HSP70A chromatin. In the RBCS2 control region we identified a strong DNaseI hypersensitive site that maps close to a CCAAT-box. This site forms the boundary of a nucleosome array with a region of ~700 bp apparently devoid of nucleosomes. This study demonstrates that chromatin structure may be determined readily at fairly high resolution in Chlamydomonas, suggesting this organism as a well-suited model for studying the role of chromatin structure on gene expression in photosynthetic eukaryotes.  相似文献   

5.
6.
7.
8.
Epigenetic modifications of histone play important roles for regulation of cell activity, such as cell division, cell death, and cell differentiation. A SET domain consisting of about 130 amino acids has lysine methyltransferase activity in the presence of the cosubstrate S-adenosyl-methionine. More than 60 SET domain-containing proteins have been predicted in various organisms. One of them, the SMYD family genes which contain a SET domain and a zinc-finger MYND domain are reported to regulate cell cycle and muscle formation. Here we examined the expression and function of smyd1 and 2 in Xenopus. smyd1 and 2 were expressed in various muscle tissues. While smyd1 expression was observed mainly in cardiac muscle and skeletal muscle, smyd2 expression was done abundantly in skeletal muscle and face region. Moreover, by loss-of-function experiments using antisense morpholino oligonucleotides, it was suggested that smyd1 and 2 related to muscle cells differentiation.  相似文献   

9.
10.
11.
Histones are vital structural proteins of chromatin that influence its dynamics and function. The tissue-specific expression of histone variants has been shown to regulate the expression of specific genes and genomic stability in animal systems. Here we report on the characterization of five histone H3 variants expressed in Lilium generative cell. The gcH3 and leH3 variants show unique sequence diversity by lacking a conserved lysine residue at position 9 (H3K9). The gH3 shares conserved structural features with centromeric H3 of Arabidopsis. The gH3 variant gene is strongly expressed in generative cells and gH3 histone is incorporated in to generative cell chromatin. The lysine residue of H3 at position 4 (H3K4) is highly methylated in the nuclei of generative cells of mature pollen, while methylation of H3K4 is low in vegetative cell nuclei. Taken together, these results suggest that male gametic cells of Lilium have unique chromatin state and histone H3 variants and their methylation might be involved in gene regulation of male gametic cells.Accession numbers for the sequence data The sequences reported in this paper have been deposited in the DDBJ database gcH3 GC1174 (accession no. AB195644), gH3 GC1008 (accession no. AB195646), leH3 GC1126 (accession no. AB195648), soH3-1 GC0075 (accession no. AB195650), soH3-2 GC1661 (accession no. AB195652), genomic sequence of gcH3 (accession no. AB195645), genomic sequence of gH3 (accession no. AB195647), genomic sequence of leH3 (accession no. AB195649), genomic sequence of soH3-2 (accession no. AB195651), genomic sequence of soH3-2 (accession no. AB195653).  相似文献   

12.
13.
14.
We investigated the regulation of the two of the three groE operons (cpn.1 and cpn.2) of the root-nodulating bacterium R. leguminosarum strain A34. Both are heat inducible, and both have a CIRCE sequence in their upstream regions, suggesting regulation by an HrcA repressor. Mutagenesis of the CIRCE sequence upstream of cpn.1 led to an increase in the levels of cpn.1 mRNA, and knock-out of the hrcA gene increased the level of Cpn60.1 protein (the GroEL homologue encoded by the cpn.1 operon). Inactivation of the hrcA gene also caused increased expression of a 29 kDa protein that was identified as RhiA, a component of a quorum-sensing system. However, neither loss of the upstream CIRCE sequence, nor loss of HrcA function, had any effect on expression from the cpn.2 promoter. Further analysis of the cpn.2 upstream region suggested regulation could be mediated by an RpoH system, and this was confirmed by deleting the rpoH gene from the chromosome, which led to a decreased level of Cpn60.2 expression. Inactivation of RpoH led to a reduction in growth rate which could be partly compensated for by inactivation of HrcA, indicating an overlap in the in vivo function of the proteins regulated by these two systems. Accession numbers: DQ173160 (hrcA operon); DQ173161 (rpoH gene).  相似文献   

15.
Dicer-like proteins (DCLs) are involved in small RNA-mediated development and viral defense in plants. In model plants, at least four DCLs have been found and a number of studies have helped to understand their function. However, the function of the Dicer or DCLs in other plants is still unclear. Here, we report the full-length cDNA sequence of Brassica rapa ssp. chinensis DCL2 (BrDCL2) gene, which contains a 4,179 bp open reading frame (ORF) encoding a protein of 1,392 amino acids. At the 3′ end of BrDCL2, clones with three different lengths of 3′ untranslated region were found. An alternative splice variant of BrDCL2, BrDCL2sv, in which one intron was retained between exon9 and exon10, was also cloned. Because of a change in the coding sequence resulting in a premature terminal codon, BrDCL2sv was expected to translate a short peptide containing the whole DEXHc domain.  相似文献   

16.
17.
The gene encoding for B. intermedius glutamyl endopeptidase (gseBi) has previously been cloned and its nucleotide sequence analyzed. In this study, the expression of this gene was explored in protease-deficient strain B. subtilis AJ73 during stationary phase of bacterial growth. We found that catabolite repression usually involved in control of endopeptidase expression during vegetative growth was not efficient at the late stationary phase. Testing of B. intermedius glutamyl endopeptidase gene expression with B. subtilis spo0-mutants revealed slight effect of these mutations on endopeptidase expression. Activity of glutamyl endopeptidase was partly left in B. subtilis ger-mutants. Probably, gseBi expression was not connected with sporulation. This enzyme might be involved in outgrowth of the spore, when germinating endospore converts into the vegetative cell. These data suggest complex regulation of B. intermedius glutamyl endopeptidase gene expression with contribution of several regulatory systems and demonstrate changes in control of enzyme biosynthesis at different stages of growth.  相似文献   

18.
Control of organ size is the product of coordinated cell division and expansion. In plants where one of these pathways is perturbed, organ size is often unaffected as compensation mechanisms are brought into play. The number of founder cells in organ primordia, dividing cells, and the period of cell proliferation determine cell number in lateral organs. We have identified the Antirrhinum FORMOSA (FO) gene as a specific regulator of floral size. Analysis of cell size and number in the fo mutant, which has increased flower size, indicates that FO is an organ-specific inhibitor of cell division and activator of cell expansion. Increased cell number in fo floral organs correlated with upregulation of genes involved in the cell cycle. In Arabidopsis the AINTEGUMENTA (ANT) gene promotes cell division. In the fo mutant increased cell number also correlates with upregulation of an Antirrhinum ANT-like gene (Am-ANT) in inflorescences that is very closely related to ANT and shares a similar expression pattern, suggesting that they may be functional equivalents. Increased cell proliferation is thought to be compensated for by reduced cell expansion to maintain organ size. In Arabidopsis petal cell expansion is inhibited by the BIGPETAL (BPE) gene, and in the fo mutant reduced cell size corresponded to upregulation of an Antirrhinum BPE-like gene (Am-BPE). Our data suggest that FO inhibits cell proliferation by negatively regulating Am-ANT, and acts upstream of Am-BPE to coordinate floral organ size. This demonstrates that organ size is modulated by the organ-specific control of both general and local gene networks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
ADP-glucose pyrophosphorylase (AGPase) represents a key regulatory step in starch synthesis. A 0.9 kb of 5′ flanking region preceding Brittle2 gene, encoding the small subunit of maize endosperm AGPase, was cloned from maize genome and its expression pattern was studied via the expression of β-glucuronidase (GUS) gene in transgenic tobacco. Analysis of GUS activities showed that the 0.9 kb fragment flanking Brittle2 gene was sufficient for driving the seed-preferred expression of the reporter gene. The activity of the 0.9 kb 5′ flanking fragment was compared with that of the tandem promoter region from a zein gene (zE19, encoding a maize 19 kDa zein protein). The results indicated that both promoters were seed-preferred in a dicotyledonous system as tobacco and the activity of zE19 promoter was three to fourfold higher than that of the 0.9 kb fragment flanking Brittle2 gene in transgenic tobacco seeds. At the same time, zE19-driven GUS gene expressed earlier than Brittle2 promoter during seed development. Histochemical location of GUS activity indicated that both promoters showed high expression in embryos, which is different from similar promoters tested in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号