首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The phosphatidylinositol-3-kinase (PI3K) was identified to be activated upon influenza A virus (IAV) infection. An early and transient induction of PI3K signalling is caused by viral attachment to cells and promotes virus entry. In later phases of infection the kinase is activated by the viral NS1 protein to prevent premature apoptosis. Besides these virus supporting functions, it was suggested that PI3K signalling is involved in dsRNA and IAV induced antiviral responses by enhancing the activity of interferon regulatory factor-3 (IRF-3). However, molecular mechanisms of activation remained obscure. Here we show that accumulation of vRNA in cells infected with influenza A or B viruses results in PI3K activation. Furthermore, expression of the RNA receptors Rig-I and MDA5 was increased upon stimulation with virion extracted vRNA or IAV infection. Using siRNA approaches, Rig-I was identified as pathogen receptor necessary for influenza virus vRNA sensing and subsequent PI3K activation in a TRIM25 and MAVS signalling dependent manner. Rig-I induced PI3K signalling was further shown to be essential for complete IRF-3 activation and consequently induction of the type I interferon response. These data identify PI3K as factor that is activated as part of the Rig-I mediated anti-pathogen response to enhance expression of type I interferons.  相似文献   

2.
Upon influenza A virus infection of cells, a wide variety of antiviral and virus-supportive signalling pathways are induced. Phosphatidylinositol-3-kinase (PI3K) is a recent addition to the growing list of signalling mediators that are activated by these viruses. Several studies have addressed the role of PI3K and the downstream effector protein kinase Akt in influenza A virus-infected cells. PI3K/Akt signalling is activated by diverse mechanisms in a biphasic manner and is required for multiple functions during infection. While the kinase supports activation of the interferon regulatory factor-3 during antiviral interferon induction, it also exhibits virus supportive functions. In fact, PI3K not only regulates a very early step during viral entry but also results in suppression of premature apoptosis at later stages of infection. The latter function is dependent on the expression of the viral non-structural protein-1 (A/NS1). It has been shown that PI3K activation occurs by direct interaction of A/NS1 with the p85 regulatory subunit and interaction sites of A/NS1 and p85 have now been mapped in detail. Here, we summarize the current knowledge on influenza virus-induced PI3K signalling and how this pathway supports viral propagation.  相似文献   

3.
4.
We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.  相似文献   

5.
Ali S  Kukolj G 《Journal of virology》2005,79(5):3174-3178
The treatment of human embryonic kidney 293 cells harboring a hepatitis C virus (HCV) subgenomic replicon with the double-stranded RNA (dsRNA) mimic poly(I . C) inhibits HCV RNA replication through an undefined mechanism. Interferon regulatory factor 3 (IRF 3) has been widely postulated to mediate various antiviral responses, and its role in mediating the response to dsRNA in 293 cells was examined. Treating the cells with dsRNA did not induce IRF-3 activation, as measured by nuclear localization or the induction of reporter genes. Moreover, the expression of a dominant negative form of IRF-3 did not affect either colony formation upon transfection of subgenomic replicon RNA or the inhibition of the HCV replicon by dsRNA. Our results suggest that the inhibition of HCV RNA replication by poly(I . C) in 293 cells is independent of IRF-3 activation.  相似文献   

6.
Recently we have shown that influenza A virus infection leads to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and that this cellular reaction is dependent on the expression of the viral nonstructural protein 1 (NS1). These data also suggested that PI3K activation confers a virus-supporting activity at intermediate stages of the infection cycle. So far it is not known which process is regulated by the kinase that supports virus replication. It is well established that upon infection with influenza A virus, the expression of the viral NS1 keeps the induction of beta interferon and the apoptotic response within a tolerable limit. On a molecular basis, this activity of NS1 has been suggested to preclude the activation of cellular double-stranded RNA receptors as well as impaired modulation of mRNA processing. Here we present a novel mode of action of the NS1 protein to suppress apoptosis induction. NS1 binds to and activates PI3K, which results in the activation of the PI3K effector Akt. This leads to a subsequent inhibition of caspase 9 and glycogen synthase-kinase 3beta and limitation of the virus-induced cell death program. Thus, NS1 not only blocks but also activates signaling pathways to ensure efficient virus replication.  相似文献   

7.
8.
9.
10.
11.
12.
In this study, we found that infection with flaviviruses, such as Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2), leads to interferon-beta (IFN-beta) gene expression in a virus-replication- and de novo protein-synthesis-dependent manner. NF-kappaB activation is essential for IFN-beta induction in JEV- and DEN-2-infected cells. However, these two viruses seem to preferentially target different members of the interferon regulatory factor (IRF) family. The activation of constitutively expressed IRF-3, characterized by slower gel mobility, dimer formation, and nuclear translocation, is more evident in JEV-infected cells. Other members of the IRF family, such as IRF-1 and IRF-7 are also induced by DEN-2, but not by JEV infection. The upstream molecules responsible for IRF-3 and NF-kappaB activation were further studied. Evidently, a cellular RNA helicase, retinoic acid-inducible gene I (RIG-I), and a cellular kinase, phosphatidylinositol-3 kinase (PI3K), are required for flavivirus-induced IRF-3 and NF-kappaB activation, respectively. Therefore, we suggest that JEV and DEN-2 initiate the host innate immune response through a molecular mechanism involving RIG-I/IRF-3 and PI3K/NF-kappaB signaling pathways.  相似文献   

13.
14.
The NS1 proteins of influenza A and B viruses (A/NS1 and B/NS1 proteins) have only approximately 20% amino acid sequence identity. Nevertheless, these proteins show several functional similarities, such as their ability to bind to the same RNA targets and to inhibit the activation of protein kinase R in vitro. A critical function of the A/NS1 protein is the inhibition of synthesis of alpha/beta interferon (IFN-alpha/beta) during viral infection. Recently, it was also found that the B/NS1 protein inhibits IFN-alpha/beta synthesis in virus-infected cells. We have now found that the expression of the B/NS1 protein complements the growth of an influenza A virus with A/NS1 deleted. Expression of the full-length B/NS1 protein (281 amino acids), as well as either its N-terminal RNA-binding domain (amino acids 1 to 93) or C-terminal domain (amino acids 94 to 281), in the absence of any other influenza B virus proteins resulted in the inhibition of IRF-3 nuclear translocation and IFN-beta promoter activation. A mutational analysis of the truncated B/NS1(1-93) protein showed that RNA-binding activity correlated with IFN-beta promoter inhibition. In addition, a recombinant influenza B virus with NS1 deleted induces higher levels of IRF-3 activation, as determined by its nuclear translocation, and of IFN-alpha/beta synthesis than wild-type influenza B virus. Our results support the hypothesis that the NS1 protein of influenza B virus plays an important role in antagonizing the IRF-3- and IFN-induced antiviral host responses to virus infection.  相似文献   

15.
Here, we report that specific manipulations of the cellular response to virus infection can cause prevention of apoptosis and consequent establishment of persistent infection. Infection of several human cell lines with Sendai virus (SeV) or human parainfluenza virus 3, two prototypic paramyxoviruses, caused slow apoptosis, which was markedly accelerated upon blocking the action of phosphatidylinositol 3-kinases (PI3 kinases) in the infected cells. The observed apoptosis required viral gene expression and the action of the caspase 8 pathway. Although virus infection activated PI3 kinase, as indicated by AKT activation, its blockage did not inhibit JNK activation or IRF-3 activation. The action of neither the Jak-STAT pathway nor the NF-kappaB pathway was required for apoptosis. In contrast, IRF-3 activation was essential, although induction of the proapototic protein TRAIL by IRF-3 was not required. When IRF-3 was absent or its activation by the RIG-I pathway was blocked, SeV established persistent infection, as documented by viral protein production and infectious virus production. Introduction of IRF-3 in the persistently infected cells restored the cells' ability to undergo apoptosis. These results demonstrated that in our model system, IRF-3 controlled the fate of the SeV-infected cells by promoting apoptosis and preventing persistence.  相似文献   

16.
17.
18.
A wide range of host cellular signal transduction pathways can be stimulated by influenza virus infection. Some of these signal transduction pathways induce the host cell’s innate immune response against influenza virus, while others are essential for efficient influenza virus replication. This review examines the cellular signaling induced by influenza virus infection in host cells, including host pattern recognition receptor (PRR)-related signaling, protein kinase C (PKC), Raf/MEK/ERK and phosphatidylinositol- 3-kinase (PI3K)/Akt signaling, and the corresponding effects on the host cell and/or virus, such as recognition of virus by the host cell, viral absorption and entry, viral ribonucleoprotein (vRNP) export, translation control of cellular and viral proteins, and virus-induced cell apoptosis. Research into influenza virus-induced cell signaling promotes a clearer understanding of influenza virus-host interactions and assists in the identification of novel antiviral targets and antiviral strategies.  相似文献   

19.
20.
Interferon regulatory factor 3 (IRF-3) undergoes phosphorylation-induced activation in virus-infected cells and plays an important role in the antiviral innate immune response. The E3L protein encoded by vaccinia virus is known to impair phosphorylation and activation of IRF-3. Kinases in addition to I kappaB kinase-related kinases are implicated in the IRF-3-dependent antiviral response. To test in human cells the role of the protein kinase regulated by RNA (PKR) in IRF-3 activation, HeLa cells made stably deficient in PKR using an RNA interference strategy were compared with PKR-sufficient cells. Rapid phosphorylation and nuclear accumulation of IRF-3 were detected in PKR-sufficient cells following infection with E3L deletion mutant (DeltaE3L) virus. By contrast, the full IRF-3 activation response was largely abolished in PKR-deficient cells. The DeltaE3L virus-induced IRF-3 activation seen in PKR-sufficient cells was diminished by treatment with cytosine beta-D-arabinofuranoside. Furthermore, the vaccinia mutant ts23, which displays increased viral double-stranded RNA production at 39 degrees C, induced PKR-dependent IRF-3 phosphorylation at 39 degrees C but not at 31 degrees C. Both IRF-3 phosphorylation and cell apoptosis induced by infection with DeltaE3L virus were dependent upon RIG-I-like receptor signal transduction components, including the adapter IPS-1. These data suggest that PKR facilitates the host innate immune response and apoptosis in virus-infected cells by mediating IRF-3 activation through the mitochondrial IPS-1 signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号