首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of human ASC and at later stages in human immature adipocytes.  相似文献   

8.
This study evaluates the effects of bone morphogenetic protein 2 (BMP-2) and all trans retinoic acid (ATRA) on adipogenesis in primary mouse embryo fibroblasts (MEFs). In BMP-2-treated MEFs, lipid accumulation and substantial induction of the adipocyte specific marker 442-aP2 suggested the conversion of MEFs into adipocytes. Such adipogenesis was found to be mediated through sequential induction of C/EBPα, C/EBPβ, and PPARγ. Both the BMP/Smad and BMP/p38 pathways contributed to the adipocyte differentiation. Contrary to the effects of BMP-2, ATRA was demonstrated to inhibit adipocyte differentiation in MEFs. Semi-quantitative RT-PCR analysis revealed that ATRA caused a selective inhibition of both the basal and induction levels of C/EBPα and PPARγ, without altering the expression pattern of C/EBPβ. Taken together, these data suggest the roles of BMP-2 and ATRA in adipogenic differentiation of primary MEFs, and the possible molecular mechanism that involves the regulation of C/EBPα, C/EBPβ, and PPARγ.  相似文献   

9.
10.
11.
12.
The molecular basis for adipose-specific gene expression is not known. To approach the problem of adipocyte gene expression, we have analyzed in detail the capacity of the 5'-flanking region of the adipocyte P2 (aP2) gene to direct cell-type specific gene expression. Although the proximal promoter containing AP-1 and C/EBP binding sites is capable of directing differentiation-dependent gene expression in cultured adipocytes, these constructs are essentially inactive in the tissues of transgenic mice. We found that -5.4 kb of the 5'-flanking region were required to direct heterologous gene (chloramphenicol acetyl transferase; CAT) expression to the adipose tissue of transgenic mice. By deletion analysis, we identified a 520 bp enhancer at -5.4 kb of the aP2 gene. We show that this enhancer can direct high levels of gene expression specifically to the adipose tissue of transgenic mice. This enhancer also functions in a differentiation-dependent manner in cultured adipocytes and cannot be transactivated in preadipocytes by C/EBP. Molecular analysis indicates that several cis- and trans- acting acting elements, though not C/EBP, contribute to the specificity and potency of this enhancer.  相似文献   

13.
14.
The differentiation of 3T3 preadipocytes into adipocytes is accompanied by a transient induction of C/EBPbeta and C/EBPdelta expression in response to treatment of the cells with methylisobutylxanthine (MIX) and dexamethasone (DEX), respectively. In this report, we demonstrate that peroxisome proliferator-activated receptor gamma (PPARgamma) expression in 3T3-L1 preadipocytes is induced by MIX and DEX, suggesting that C/EBPbeta and C/EBPdelta may be involved in this process. Using a tetracycline-responsive expression system, we have recently shown that the conditional ectopic expression of C/EBPbeta in NIH 3T3 fibroblasts (beta2 cells) in the presence of DEX activates the synthesis of peroxisome PPARgamma mRNA. Subsequent exposure of these cells to PPAR activators stimulates their conversion into adipocytes; however, neither the expression of C/EBPbeta nor exposure to DEX alone is capable of inducing PPARgamma expression in the beta2 cell line. We find that unlike the case for 3T3 preadipocytes, C/EBPdelta is not induced by DEX in these 3T3 fibroblasts and therefore is not relaying the effect of this glucocorticoid to the PPARgamma gene. To define the role of glucocorticoids in regulating PPARgamma expression and the possible involvement of C/EBPdelta, we have established an additional set of NIH 3T3 cell lines expressing either C/EBPdelta alone (delta23 cells) or C/EBPdelta and C/EBPbeta together (beta/delta39 cells), using the tetracycline-responsive system. Culture of these cells in tetracycline-deficient medium containing DEX, MIX, insulin, and fetal bovine serum shows that the beta/delta39 cells express PPARgamma and aP2 mRNAs at levels that are almost equivalent to those observed in fully differentiated 3T3-L1 adipocytes. These levels are approximately threefold higher than their levels of expression in the beta2 cells. Despite the fact that these beta/delta39 cells produce abundant amounts of C/EBPbeta and C/EBPdelta (in the absence of tetracycline), they still require glucocorticoids to attain maximum expression of PPARgamma mRNA. Furthermore, the induction of PPARgamma mRNA by exposure of these cells to DEX occurs in the absence of ongoing protein synthesis. The delta23 cells, on the other hand, are not capable of activating PPARgamma gene expression when exposed to the same adipogenic inducers. Finally, attenuation of ectopic C/EBPbeta production at various stages during the differentiation process results in a concomitant inhibition of PPARgamma and the adipogenic program. These data strongly suggest that the induction of PPARgamma gene expression in multipotential mesenchymal stem cells (NIH 3T3 fibroblasts) is dependent on elevated levels of C/EBPbeta throughout the differentiation process, as well as an initial exposure to glucocorticoids. C/EBPdelta may function by synergizing with C/EBPbeta to enhance the level of PPARgamma expression.  相似文献   

15.
16.
Rehmannia glutinosa, a Traditional Chinese Medicine (TCM), has been used to increase physical strength. Here, we report that Rehmannia glutinosa extract (RE) inhibits adipocyte differentiation and adipogenesis. RE impairs differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. At the molecular level, treatment with RE inhibits expression of the key adipocyte differentiation regulator C/EBPβ, as well as C/EBPα and the terminal marker protein 422/aP2, during differentiation of preadipocytes into adipocytes. Additionally, RE inhibits the mitotic clonal expansion (MCE) process of adipocyte differentiation, and RE prevents localization of C/EBPβ to the centromeres. RE also prevents high fat diet (HFD) induced weight gain and adiposity in rats. Taken together, our results indicate that Rehmannia glutinosa extract inhibits preadipocyte differentiation and adipogenesis in cultured cells and in rodent models of obesity.  相似文献   

17.
Western blot analysis of 3T3-L1 adipocyte proteins using an anti-C/EBPalpha antibody detected a 24kD polypeptide in addition to the expected 42 and 30kD isoforms of C/EBPalpha. Mass spectrometric sequencing of the protein following its purification by HPLC and preparative 2D gel electrophoresis identified it as glutathione S-transferase zeta/maleylacetoacetate isomerase (GSTzeta/MAAI). Expression of GSTzeta/MAAI mRNA and protein was induced during the terminal phase of adipogenesis in 3T3-L1 preadipocytes. Ectopic expression of PPARgamma2 in NIH-3T3 fibroblasts exposed to insulin and troglitazone-induced perilipin production, but was incapable of activating GSTzeta/MAAI unless C/EBPalpha was also expressed. Similarly, ectopic expression of C/EBPalpha in PPARgamma +/- or PPARgamma -/- MEFs demonstrated that the C/EBPalpha-dependent induction of GSTzeta/MAAI production was dependent on expression of endogenous PPARgamma. These data suggest a role for GSTzeta/MAAI in mature adipocytes that may be responsive to the thiazolidinedione class of insulin sensitizing PPARgamma ligands.  相似文献   

18.
19.
20.
Fat mass, adipocyte size and metabolic responsiveness, and preadipocyte differentiation decrease between middle and old age. We show that expression of CCAAT/enhancer binding protein (C/EBP)-alpha, a key regulator of adipogenesis and fat cell function, declined substantially with aging in differentiating preadipocytes cultured under identical conditions from rats of various ages. Overexpression of C/EBP alpha in preadipocytes cultured from old rats restored capacity to differentiate into fat cells, indicating that downstream differentiation-dependent genes maintain responsiveness to regulators of adipogenesis. C/EBP alpha-expression also decreased with age in fat tissue from three different depots and in isolated fat cells. The overall level of C/EBP beta, which modulates C/EBP alpha-expression, did not change with age, but the truncated, dominant-negative C/EBP beta-liver inhibitory protein (LIP) isoform increased in cultured preadipocytes and isolated fat cells. Overexpression of C/EBP beta-LIP in preadipocytes from young rats impaired adipogenesis. C/EBP delta, which acts with full-length C/EBP beta to enhance adipogenesis, decreased with age. Thus processes intrinsic to adipose cells involving changes in C/EBP family members contribute to impaired adipogenesis and altered fat tissue function with aging. These effects are potentially reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号