首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The RB7 matrix attachment region (MAR), when flanking a uidA (GUS) reporter gene, has been previously shown to increase uidA gene expression by 60-fold in stably transformed tobacco suspension cell lines. We have now used the same co-transformation procedure to determine the effect of flanking MARs on uidA gene expression in tobacco plants. The neomycin phosphotransferase selection gene and uidA reporter gene on separate plasmids were co-transformed into seedlings by microprojectile bombardment. In primary transgenic plants, the average uidA expression in plants with MARs was twofold greater than in control plants without MARs, but there was no effect on variation of expression. GUS activity was not proportional to the number of integrated uidA transgenes over the entire range of copy numbers. However, in the lower part of the copy number range, MAR lines show a tendency for expression to increase with copy number. Transgene expression in backcross progenies of the MAR-containing lines averaged threefold higher than in control progenies. MARs also reduced the loss of transgene expression in the BC1 generation. Sixty-three per cent of the 21 MAR-containing primary transformants, but only 20% of the 14 control primary transformants, produced backcross progenies in which no loss of transgene expression was observed. These observations are discussed in the context of homology-dependent gene silencing.  相似文献   

2.
3.
Nuclear matrix attachment regions (MARs) are known to bind specifically to the nuclear scaffold and are thought to influence expression of the transgenes. In our previous studies, a new deoxyribonucleic acid fragment isolated from Dunaliella salina could bind to the nuclear matrix in vitro and had the typical characteristics of MARs. In this study, to investigate effects of MARs on expression of transgenes in the stably transformed cells of D. salina, expression vectors with and without MARs, which contained chloramphenicol acetyltransferase (CAT) reporter gene driven by D. salina ribulose 1,5-bisphosphate carboxylase/oxygenase promoter, were constructed and delivered, respectively, into cells of D. salina by electroporation. Twenty stably transformed colonies of D. salina were randomly picked out, and CAT gene expression was assayed. The results showed that the CAT enzyme of the colonies of D. salina transformed with the expression vector containing MARs averaged out about 4.5-fold higher than those without MARs, while the transgene expression variation among individuals of transformants decreased threefold. The CAT enzyme in the stably transformed lines was not significantly proportional to the gene copy numbers, suggesting that the effects of MARs on transgene expression may not be through increasing the transgene copy numbers.  相似文献   

4.
Matrix attachment regions (MARs) have been used to enhance transgene expression and to reduce transgene expression instability in various organisms. In plants, contradictory data question the role of MAR sequences. To assess the use of MAR sequences in maize, we have used two well-characterized MARs from the maize adh-1 region. The MARs have been cloned either 5 to or at both sides of a reporter gene expression cassette to reconstitute a MAR-based domain. Histochemical staining revealed a new transgene expression pattern in roots of regenerated plants and their progeny. Furthermore, MARs systematically induced variegation. We show here that maize adh-1 MARs are able to modify transgene expression patterns as a heritable trait, giving a new and complementary outcome following use of MARs in genetic transformation.Abbreviations adh-1 Alcohol dehydrogenase 1 - GUS -Glucuronidase - HSC80 Heat shock cognate 80 gene - MAR Matrix attachment regions - Rsyn-7 Root specific synthetic promoter  相似文献   

5.
To investigate the effect of matrix attachment regions (MARs) on transgene expression levels and stability in cereal crops, we generated 83 independent transgenic rice callus lines containing a gusA expression cassette either as a simple expression unit, or flanked with MARs from tobacco (Rb7) or yeast (ARS1). Transgenic rice plants were regenerated from these callus lines and analysed at the structural and expression levels over two generations. In the first generation (T0), both Rb7 and ARS1 MARs significantly increased transgene expression levels. In the populations of plants containing MARs, we observed a significant reduction in the number of non-expressing lines compared to the population of plants without MARs. However, variation in β-glucuronidase (GUS) expression levels between independent lines was similar both in the presence and absence of flanking MARs. In the presence of MARs, GUS activity increased in proportion to transgene copy number up to 20 copies, but was generally reduced in lines carrying a higher copy number. In the population of plants without MARs, there was no correlation between expression level and transgene copy number. In the second generation (T1), transgene expression levels were significantly correlated with those of the T0 parents. The Rb7 MARs significantly improved the stability of transgene expression levels over two generations, and therefore appear to offer protection against transgene silencing. Our study shows that the exploitation of MARs may be an important strategy for stabilising transgene expression levels in genetically engineered cereals.  相似文献   

6.
Segregating T1, T2 and T3 transgenic rice populations, derived from independent particle-bombardment-mediated transformation events were examined in order to assess the effect of gene dosage on transgene expression levels and stability. The expression level of the unselected β-glucuronidase (gusA) reporter gene was quantified in plants from these populations. The gusA gene dosage was determined by segregation analysis of progeny seedlings at the structural level (by PCR) and at the expression level. For some transformation events a gene dosage effect on transgene expression was observed, leading to higher transgene expression levels in homozygous progeny than in hemizygous progeny or primary transgenic plants. However, in many other transformation events, the homozygous state appears to be disadvantageous, being associated with lower transgene expression levels, gene silencing or counter-selection of homozygous plants across generations. Change of gene dosage is probably one of the key factors influencing transgene expression levels and stability in transgenic rice. This is particularly important when considering molecular genetic studies and crop improvement programmes. The possible influence of matrix attachment regions (MARs) in increasing the likelihood of an additive effect on transgene expression level is discussed. Received: 21 March 2001 / Accepted: 29 June 2001  相似文献   

7.
Many studies in both animal and plant systems have shown that matrix attachment regions (MARs) can increase the expression of flanking transgenes. However, our previous studies revealed no effect of the chicken lysozyme MARs (chiMARs) on transgene expression in the first generation transgenic Arabidopsis thaliana plants transformed with a β-glucuronidase gene (uidA) unless gene silencing mutants were used as genetic background for transformation. In the present study, we investigated why chiMARs do not influence transgene expression in transgenic wild-type Arabidopsis plants. We first studied the effect of chiMARs on transgene expression in the progeny of primary transformants harboring chiMAR-flanked T-DNAs. Our data indicate that chiMARs do not affect transgene expression in consecutive generations of wild-type A. thaliana plants. Next, we examined whether these observed results in A. thaliana transformants are influenced by the applied transformation method. The results from in vitro transformed A. thaliana plants are in accordance with those from in planta transformed A. thaliana plants and again reveal no influence of chiMARs on transgene expression in A. thaliana wild-type transformants. The effect of chiMARs on transgene expression is also examined in in vitro transformed Nicotiana tabacum plants, but as for A. thaliana, the transgene expression in tobacco transformants is not altered by the presence of chiMARs. Taken together, our results show that the applied method or the plant species used for transformation does not influence whether and how chiMARs have an effect on transgene expression. Finally, we studied the effect of MARs (tabMARs) of plant origin (tobacco) on the transgene expression in A. thaliana wild-type plants and suppressed gene silencing (sgs2) mutants. Our results clearly show that similar to chiMARs, the tobacco-derived MARs do not enhance transgene expression in a wild-type background but can be used to enhance transgene expression in a mutant impaired in gene silencing. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Miguel F.C. De Bolle, Katleen M.J. Butaye Contributed equally to this work  相似文献   

8.
9.
The plant signaling hormones salicylic acid (SA) and jasmonic acid (JA) are regulators of inducible defenses that are activated upon pathogen or insect attack. Cross-talk between SA- and JA-dependent signaling pathways allows a plant to finely tune its response to the attacker encountered. In Arabidopsis, pharmacological experiments revealed that SA exerts a strong antagonistic effect on JA-responsive genes, such as PDF1.2, indicating that the SA pathway can be prioritized over the JA pathway. SA-mediated suppression of the JA-responsive PDF1.2 promoter was exploited for setting up a genetic screen aiming at the isolation of signal transduction mutants that are impaired in this cross-talk mechanism. The PDF1.2 promoter was fused to the herbicide resistance gene BAR to allow for life/death screening of a population of mutagenized transgenic plants. Non-mutant plants should survive herbicide treatment when methyl jasmonate (MeJA) is applied, but suppression of the JA response by SA should be lethal in combination with the herbicide. Conversely, crucial SA/JA cross-talk mutants should survive the combination treatment. SA effectively suppressed the expression of the PDF1.2::BAR transgene. However, suppression of the BAR gene did not result in suppression of herbicide resistance. Hence, a screening method based on quantitative differences in the expression of a reporter gene may be better suited to identify SA/JA cross-talk mutants. Here, we demonstrate that the PDF1.2::GUS reporter will be excellently suited in this respect.Key words: plant defense, salicylic acid, jasmonic acid, cross-talk, mutant screen, Arabidopsis  相似文献   

10.
Matrix attachment regions (MARs) are binding sites for nuclear scaffold proteins in vitro, and are proposed to mediate the attachment of chromatin to the nuclear scaffold in vivo. Previous reports suggest that MAR elements may stabilize transgene expression. Here, we tested the effects of two maize MAR elements (P-MAR from the P1-rr gene, and Adh1-MAR from the adh1 gene) on the expression of a gusA reporter gene driven by three different promoters: the maize p1 gene promoter, a wheat peroxidase (WP) gene promoter, or a synthetic promoter (Rsyn7). The inclusion of P-MAR or Adh1-MAR on P::GUS transgene constructs did not reduce variation in the levels of GUS activity among independent transformation events, nor among the progeny derived from each event. The Adh1-MAR element did not affect GUS expression driven by the WP promoter, but did modify the spatial pattern of expression of the Rsyn7::GUS transgene. These results indicate that, in transgenic maize plants, the effects of MAR elements can vary significantly depending upon the promoter used to drive the transgene.  相似文献   

11.
12.
Matrix attachment regions (MARs) are thought to participate in the organization and segregation of independent chromosomal loop domains. Although there are several reports on the action of natural MARs in the context of heterologous genes in transgenic plants, in our study we tested a synthetic MAR (sMAR) with the special property of unpairing when under superhelical strain, for its effect on reporter gene expression in tobacco plants. The synthetic MAR was a multimer of a short sequence from the MAR 3' end of the immunoglobulin heavy chain (IgH) enhancer. This sMAR sequence was used to flank the beta-glucuronidase (GUS) reporter gene within the T-DNA of the binary vector pBI121. Vectors with or without the sMARs were then used to transform tobacco plants by Agrobacterium tumefaciens. Transgenic plants containing the sMAR sequences flanking the GUS gene exhibited higher levels of transgene expression compared with transgenic plants which lacked the sMARs. This effect was observed independently of the position of the sMAR at the 5' side of the reporter gene. However, variation of the detected transgene expression was significant in all transformed plant populations, irrespective of the construct used.  相似文献   

13.
Low‐level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR‐6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR‐6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP‐B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP‐B, DHFR intron MAR element and MAR‐6. Additionally, as expected, the three MAR‐containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non‐MAR‐containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP‐B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.  相似文献   

14.
The relationship between transgene copy number, rearrangement levels, inheritance patterns, expression levels, transgene stability and plant fertility was analysed in a random population of 95 independently transformed rice plant lines. This analysis has been conducted for both the selectable marker gene ( aphIV) and the unselected reporter gene ( gusA), in the presence or absence of flanking Matrix Attachment Regions (MARs) in order to develop a better understanding of transgene behaviour in a population of transgenic rice plants created by particle bombardment. In the first generation (T(0)), all the independently transformed plant lines contained and expressed the aphIV gene conferring resistance to hygromycin, but only 87% of the lines were co-transformed with the unselected gusA marker gene. Both transgenes seemed to be expressed independently. Most lines exhibited complex transgene rearrangements as well as an intact transgene expression unit for both aphIV and gusA transgenes. Transgene copy number was proportional to the quantity of DNA used during bombardment. In T(0) plants, high gusA copy number significantly decreased GUS expression levels but there was no correlation between expression level and transgene copy number across the entire population of lines. Four main factors impaired transgene expression in primary transgenic plants (T(0)) and their progeny (T(1)): (1) absence of transgene expression in T(0) plants (41% of lines), (2) sterility of T(0) plants (28% of lines), (3) non-transmission of intact transgenes to some or all progenies (at least 14% of lines), and (4) silencing of transgene expression in progeny plants (10% of lines). Transgene stability was significantly related to differences in transgene structure and expression levels. The presence of Rb7 MARs flanking the gusA expression unit had no effect on plant fertility or non-transmission of transgenes, but provided copy number-dependent expression of the transgene and improved expression levels and stability over two generations. Overall, only 7% of the plant lines without MARs and 17% of the lines with MARs initially generated, exhibited stable transgene expression over two generations.  相似文献   

15.
为研究核基质结合区 (MAR)序列不同插入位置对转基因表达作用的影响,PCR扩增人β 珠蛋白MAR分别插入到含氯霉素乙酰转移酶(chloramphenicol acetyltransferase,CAT)报告基因真核表达载体pCATG表达盒两侧、5′端及3′端.酶切鉴定后,用阳离子聚合物转染CHO细胞,G418筛选出阳性细胞克隆,ELISA分析CAT基因的表达水平,半定量PCR分析CAT基因相对拷贝数.结果表明,表达盒两侧含MAR序列的载体能提高介导的转基因表达水平平均提高10.4倍,5′端含MAR序列的载体表达水平平均提高3.9倍,3′端含MAR序列的载体反而降低转基因表达水平.5′端含MAR序列的表达载体其转基因相对拷贝数高于其它两组载体的基因拷贝数,转基因表达量与基因拷贝数不成正比.  相似文献   

16.
Improving genetic transformation efficiency is a major concern in plant genetic engineering. While various strategies have been investigated, the enhancement of selectable marker gene expression has not been tried extensively. We used maize matrix attachment regions (MARs) to bracket an herbicide resistance transgene, bar. MARs have been reported to enhance transgene expression level and stability. We show here that MARs not only enhance transformation efficiency by 50%, but are also able to increase or decrease relative efficiencies of each step of the regeneration process depending on MAR sequence combinations. Furthermore, we assessed the trans-effect of MARs in co-bombardment experiments with two independent plasmids, one including the MAR sequences and the other one the bar gene. As for simple bombardment, MARs enhanced transformation efficiency by having a positive influence on organogenesis step in the regeneration process.  相似文献   

17.
18.
The tobacco nuclear matrix attachment region (MAR), RB7, has been shown to have a much greater effect on transgene expression in cultured cells than in transgenic plants. This is comparable to work in mouse systems showing that MARs have a positive effect on transgene expression in embryonic tissues but not adult tissues. There are several possible explanations for these observations. One is that cell differentiation state and proliferation rate can affect MAR function. We tested this possibility by initiating suspension cell cultures from well-characterized transgenic plants transformed with 35S::GUS with and without flanking MARs and then comparing GUS specific activity in the cell lines to those of the transgenic plants from which the cell lines were derived. If cell differentiation state and proliferation rate do affect MAR function, we would expect the ratio of transgene expression (cell suspensions : plants) to be greater in MAR lines than in control lines. This turned out not to be the case. Thus, it appears that MAR function is not enhanced simply because cells in culture divide rapidly and are not differentiated. Because in animal systems the chromosomal protein HMG-I/Y has been shown to be upregulated in proliferating cells and may have a role in MAR function, we have also examined the levels of the tobacco HMG-I/Y homolog by immunoblotting. The level of this protein does not differ between primary transformant cultured cells (NT-1) and Nicotiana tabacum plants (SR-1). However, a higher molecular weight cross-reacting polypeptide was found in nuclei from the NT-1 cell suspensions but was not detected in SR-1 leaf nuclei or cell suspensions derived from the SR-1 plants.  相似文献   

19.
Functional analysis of BnMAR element in transgenic tobacco plants   总被引:1,自引:0,他引:1  
Scaffold/matrix attachment regions (S/MARs) are defined as genomic DNA sequences, located at the physical boundaries of chromatin loops. Previous reports suggest that S/MARs elements may increase and stabilize the expression of transgene. In this study, DNA sequence with MAR characteristics has been isolated from B. napus . The BnMARs sequence was used to flank the CaMV35S-GUS-NOS expression cassette within the T-DNA of the plant expression vector pPZP212. These constructs were introduced into tobacco plants, respectively and the GUS reporter gene expression was investigated in stably transformed plants. When the forward BnMARs sequence was inserted into the upstream of CaMV35S promoter, the average GUS activities were much higher than those without BnMARs in transgenic tobacco. The GUS expression of M(+)35S:GUS, M(+)35S:GUSM(+) and M(+)35S:GUSM(−) constructs increased average 1.0-fold, with or without BnMARs located downstream of NOS. The GUS expression would not be affected when reverse BnMARs sequence inserted whether upstream of CaMV35S promoter or downstream of NOS. The GUS expression was affected a little when reverse BnMARs sequence was inserted the downstream of NOS and BnMARs could not act by serving as of promoter. The results showed that the presence of forward BnMARs sequence does have an obvious impact on enhancing downstream gene expression and its effect is unidirectional.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号