首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
稻瘟病是世界上影响水稻(Oryza sativa)粮食生产的主要病害之一, 抗病基因的发掘与利用是抗病育种的基础和核心。随着寄主水稻和病原菌稻瘟病菌(Magnaporthe oryzae)基因组测序和基因注释的完成, 水稻和稻瘟病菌的互作体系成为研究植物与真菌互作的模式系统。该文对稻瘟病抗病基因的遗传、定位、克隆及育种利用进行概述, 并通过生物信息学分析方法, 探讨了水稻全基因组中NBS-LRR类抗病基因在水稻12条染色体上的分布情况, 同时对稻瘟病菌无毒基因的鉴定及无毒蛋白与抗病蛋白的互作进行初步分析。最后对稻瘟病抗病基因研究存在的问题进行分析并展望了未来的研究方向, 以期为水稻抗稻瘟病育种发展和抗病机制的深入理解提供参考。  相似文献   

2.
稻瘟病菌无毒基因研究进展   总被引:4,自引:0,他引:4  
水稻与稻瘟病菌之间的特异互作符合基因对基因假说。本文将从稻瘟病菌与水稻抗病基因间的互作特点、稻瘟病菌的分子标记、已克隆的稻瘟病菌无毒基因三个方面对稻瘟病菌无毒基因研究进展作简要介绍  相似文献   

3.
水稻抗稻瘟病天然免疫机制及抗病育种新策略   总被引:3,自引:0,他引:3  
何峰  张浩  刘金灵  王志龙  王国梁 《遗传》2014,36(8):756-765
稻瘟病是水稻最严重的病害之一,由子囊菌(Magnaporthe oryzae)引起。利用抗病品种是防治稻瘟病最经济、最有效的措施。近年来,稻瘟病已发展为研究植物与病原真菌分子互作机制的模式系统,在水稻与稻瘟菌互作和寄主抗性分子生物学、基因组学和蛋白组学等领域取得了一系列重要的研究成果。文章综述了近年来水稻抗稻瘟病两种天然免疫机制,即病原菌相关分子模式诱导和效应蛋白诱导的抗病机制研究的最新进展,讨论了GWAS、TALLEN、CRISPR和HIGS等基因组研究新方法和新技术在水稻抗病育种中的应用,并对目前稻瘟病抗性机制研究和抗病育种中的问题和挑战进行了探讨和展望。  相似文献   

4.
水稻稻瘟病抗性基因研究概况   总被引:4,自引:0,他引:4  
稻瘟病是由稻瘟病菌引起的世界性水稻病害,对水稻生产构成严重威胁。分子标记辅助培育持久抗性品种是目前解决稻瘟病抗病品种感病化问题的有效措施。稻瘟病菌-水稻之间的相互作用机理,DNA分子标记的开发与应用,稻瘟病抗性基因定位、克隆与分离及其功能表达等方面的研究进展在很大程度上影响分子标记辅助育种的进程。就此方面的研究概况作一综述。  相似文献   

5.
水稻白叶枯病由Xanthomonas oryzae pv.Oryzae(Xoo)致病菌引起,为水稻三大病害之一,对世界水稻生产造成了严重危害.水稻与Xoo互作符合“基因对基因”假说,是研究植物与细菌互作的典型模式系统.水稻基因组以及Xoo基因组测序的完成,极大地推动了水稻-Xoo互作分子机理的研究.就有关水稻与Xoo互作机制的最新研究进展作一概述.  相似文献   

6.
稻瘟病菌致病相关基因研究进展*   总被引:3,自引:0,他引:3  
稻瘟病是水稻的毁灭性病害,世界各地水稻产区都有此病发生。稻瘟病菌(Magnaporthe grisea)具有许多病原菌生命循环的重要特点:(1)分化形成称为附着胞的特异的侵染结构.(2)在这个过程中需要粘胶、疏水蛋白、黑色素、甘油等物质的合成与参与。(3)附着胞具有穿透寄主表皮的功能。(4)具有特异的信号传导途径,调节附着胞、侵染栓等侵染结构的形态分化(morphogenesis)。(5)在M. grisea和其寄主之间存在基因对基因关系,涉及到主要的真菌无毒基因和植物抗性基因。因此,稻瘟病菌致病的分子生物学及其与水稻寄主的互作研究是寻找新的…  相似文献   

7.
稻瘟菌无毒基因研究进展   总被引:4,自引:0,他引:4  
Zhang Z  Jiang H  Wang YL  Sun GC 《遗传》2011,33(6):591-600
稻瘟菌是引起水稻稻瘟病的病原物。水稻与稻瘟菌间存在广泛而特异的相互作用,是研究寄主与病原物互作的重要模式系统。本文对稻瘟菌与水稻互作最重要的激发子―无毒基因的研究现状进行了概括,讨论了无毒基因的定位、克隆方法以及已克隆无毒基因的功能及进化研究,同时对今后无毒基因研究的重要方向进行了探讨,为深入理解无毒基因的功能及与水稻可能的互作关系奠定了基础。  相似文献   

8.
稻瘟病菌AVR-pita等位基因的遗传多样性研究(简报)   总被引:1,自引:0,他引:1  
由真菌Magnaporthe grisea引起的稻瘟病是我国水稻三大病害之一.也是遍及世界各水稻产区的重要病害.每年均有不同程度的发生.流行年份一般减产10%-20%.严重的达40%-50%.局部田块甚至颗粒无收。稻瘟病菌在进化过程中形成了遗传多样性和毒性易变的特性.是水稻品种抗病性容易丧失的主要原因之一。对稻瘟病系统研究的证据表明.水稻与稻瘟病菌之间的互作.符合“基因对基因”假说。也就是说.水稻有一抗病基因,稻瘟病菌中就会有相对应的无毒基因.  相似文献   

9.
作为一种主要粮食作物,水稻的生产影响全球经济的稳步增长。各种生物、非生物胁迫威胁水稻的生长发育过程。稻瘟病菌Magnaporthe oryzae(syn.Pyricularia oryzae)为重要的农业病原微生物,其引起的稻瘟病是世界性水稻重要病害,给水稻生产造成严重产量损失。相对于传统的化学农药防治,培育抗稻瘟病水稻品种是比较环保、有效的病害防治策略,然而田间稻瘟病菌群体复杂多样,小种遗传变异速度很快,抗病水稻品种的种植年限和范围受限。因此,掌握水稻抗病机理和稻瘟病菌致病机制有助于制定更好的防治措施。水稻与稻瘟病菌的相互作用过程涉及了不同层次的植物免疫反应,根据近年来水稻和稻瘟病菌功能基因组学研究上的最新进展,侧重对水稻抗稻瘟病的分子机理和信号传导方面进行了综述,并展望了二者研究所面临的机遇和挑战,以期进一步推进水稻与稻瘟病菌互作的分子机理研究,并为水稻的抗病育种提供借鉴。  相似文献   

10.
稻瘟病分子生物学研究进展   总被引:18,自引:0,他引:18  
稻瘟病分子生物学发展迅速,已分子标记定位的稻瘟病主效抗性基因15个,微效抗性基因3个;水稻抗稻瘟病基因Pi-ta和Pi-b已成功克隆。稻瘟病菌系谱与致病型关系可分为简单与复杂两种类型。本文对水稻抗稻瘟病基因的定位和克隆,稻瘟病菌群体遗传结构,致病性遗传、基因组分析、无毒基因克隆、准性生殖等研究进展进行了评述。  相似文献   

11.
The MGOS (Magnaporthe grisea Oryza sativa) web-based database contains data from Oryza sativa and Magnaporthe grisea interaction experiments in which M. grisea is the fungal pathogen that causes the rice blast disease. In order to study the interactions, a consortium of fungal and rice geneticists was formed to construct a comprehensive set of experiments that would elucidate information about the gene expression of both rice and M. grisea during the infection cycle. These experiments included constructing and sequencing cDNA and robust long-serial analysis gene expression libraries from both host and pathogen during different stages of infection in both resistant and susceptible interactions, generating >50,000 M. grisea mutants and applying them to susceptible rice strains to test for pathogenicity, and constructing a dual O. sativa-M. grisea microarray. MGOS was developed as a central web-based repository for all the experimental data along with the rice and M. grisea genomic sequence. Community-based annotation is available for the M. grisea genes to aid in the study of the interactions.  相似文献   

12.
Lau G  Hamer JE 《The Plant cell》1996,8(5):771-781
MPG1, a pathogenicity gene of the rice blast fungus Magnaporthe grisea, is expressed during pathogenesis and in axenic culture during nitrogen or glucose limitation. We initiated a search for regulatory mutations that would impair nitrogen metabolism, MPG1 gene expression, and pathogenicity. First, we developed a pair of laboratory strains that were highly fertile and pathogenic toward barley. Using a combinatorial genetic screen, we identified mutants that failed to utilize a wide range of nitrogen sources (e.g., nitrate or amino acids) and then tested the effect of these mutations on pathogenicity. We identified five mutants and designated them Nr- (for nitrogen regulation defective). We show that two of these mutations define two genes, designated NPR1 and NPR2 (for nitrogen pathogenicity regulation), that are essential for pathogenicity and the utilization of many nitrogen sources. These genes are nonallelic to the major nitrogen regulatory gene in M. grisea and are required for expression of the pathogenicity gene MPG1. We propose that NPR1 and NPR2 are major regulators of pathogenicity in M. grisea and may be novel regulators of nitrogen metabolism in fungi.  相似文献   

13.
B. Valent  L. Farrall    F. G. Chumley 《Genetics》1991,127(1):87-101
We have identified genes for pathogenicity toward rice (Oryza sativa) and genes for virulence toward specific rice cultivars in the plant pathogenic fungus Magnaporthe grisea. A genetic cross was conducted between the weeping lovegrass (Eragrostis curvula) pathogen 4091-5-8, a highly fertile, hermaphroditic laboratory strain, and the rice pathogen O-135, a poorly fertile, female-sterile field isolate that infects weeping lovegrass as well as rice. A six-generation backcrossing scheme was then undertaken with the rice pathogen as the recurrent parent. One goal of these crosses was to generate rice pathogenic progeny with the high fertility characteristic of strain 4091-5-8, which would permit rigorous genetic analysis of rice pathogens. Therefore, progeny strains to be used as parents for backcross generations were chosen only on the basis of fertility. The ratios of pathogenic to nonpathogenic (and virulent to avirulent) progeny through the backcross generations suggested that the starting parent strains differ in two types of genes that control the ability to infect rice. First, they differ by polygenic factors that determine the extent of lesion development achieved by those progeny that infect rice. These genes do not appear to play a role in infection of weeping lovegrass because both parents and all progeny infect weeping lovegrass. Second, the parents differ by simple Mendelian determinants, ``avirulence genes,' that govern virulence toward specific rice cultivars in all-or-none fashion. Several crosses confirm the segregation of three unlinked avirulence genes, Avr1-CO39, Avr1-M201 and Avr1-YAMO, alleles of which determine avirulence on rice cultivars CO39, M201, and Yashiro-mochi, respectively. Interestingly, avirulence alleles of Avr1-CO39, Avr1-M201 and Avr1-YAMO were inherited from the parent strain 4091-5-8, which is a nonpathogen of rice. Middle repetitive DNA sequences (``MGR sequences'), present in approximately 40-50 copies in the genome of the rice pathogen parent, and in very low copy number in the genome of the nonpathogen of rice, were used as physical markers to monitor restoration of the rice pathogen genetic background during introgression of fertility. The introgression of highest levels of fertility into the most successful rice pathogen progeny was incomplete by the sixth generation, perhaps a consequence of genetic linkage between genes for fertility and genes for rice pathogenicity. One chromosomal DNA segment with MGR sequence homology appeared to be linked to the gene Avr1-CO39. Finally, many of the crosses described in this paper exhibited a characteristic common to many crosses involving M. grisea rice pathogen field isolates. That is, pigment-defective mutants frequently appeared among the progeny.  相似文献   

14.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is the most devastating disease of rice and severely affects crop stability and sustainability worldwide. This disease has advanced to become one of the premier model fungal pathosystems for host—pathogen interactions because of the depth of comprehensive studies in both species using modern genetic, genomic, proteomic and bioinformatic approaches. Many fungal genes involved in pathogenicity and rice genes involved in effector recognition and defence responses have been identified over the past decade. Specifically, the cloning of a total of nine avirulence (Avr) genes in M. oryzae, 13 rice resistance (R) genes and two rice blast quantitative trait loci (QTLs) has provided new insights into the molecular basis of fungal and plant interactions. In this article, we consider the new findings on the structure and function of the recently cloned R and Avr genes, and provide perspectives for future research directions towards a better understanding of the molecular underpinnings of the rice–M. oryzae interaction.  相似文献   

15.
The fungus Magnaporthe grisea, the causal agent of rice blast disease, is a major pathogen of rice and is capable of producing epidemics on other cultivated cereals, including barley (Hordeum vulgare). We explored the requirements for basal resistance of barley against a compatible M. grisea isolate using both genetic and chemical approaches. Mutants of the RAR1 gene required for the function of major resistance gene-mediated resistance and mutants of the ROR1 and ROR2 genes required for full expression of cell-wall-penetration resistance against powdery mildew pathogens were examined for macroscopic and microscopic alterations in M. grisea growth and symptoms. RAR1 contributed to resistance in epidermis and mesophyll at different stages of fungal infection dependent on the MLO/mlo-5 status. Whereas no ROR2 effect was detected, ROR1 was found to contribute to cell-wall-penetration resistance, at least in the epidermis. Application of the actin agonist cytochalasin E promoted cell wall penetration by M. grisea in a dose-dependent manner, demonstrating an involvement of the actin cytoskeleton in penetration resistance.  相似文献   

16.
17.
稻瘟病是由子囊菌引起的广泛发生在世界各水稻产区的主要真菌病害。由于病原菌致病性的高度分化,使得对稻瘟病很难控制和防治。长期实践证明,培育抗病品种是稻瘟病抗病育种的主要目标。随着基因工程的发展,利用转基因技术导入外源基因改良稻瘟病抗性已成为一条新途径。现有研究表明,通过某些抗病基因、抗真菌蛋白基因、杀菌肽基因的克隆和转育,可以培育出获得对稻瘟病广谱抗性的水稻品种(系)。  相似文献   

18.
Obligate plant-pathogenic fungi have proved extremely difficult to characterize with molecular genetics because they cannot be cultured away from host plants and only can be manipulated experimentally in limited circumstances. Previously, in order to characterize signal transduction processes during infection-related development of the powdery mildew fungus Blumeria graminis (syn. Erysiphe graminis) f. sp. hordei, we described a gene similar to the catalytic subunit of cyclic AMP-dependent protein kinase A (here renamed Bka1). Functional characterization of this gene has been achieved by expression in a deltacpkA mutant of the nonobligate pathogen Magnaporthe grisea. This nonpathogenic M. grisea deltacpkA mutant displays delayed and incomplete appressorium development, suggesting a role for PKA-c in the signal transduction processes that control the maturation of infection cells. Transformation of the deltacpkA mutant with the mildew Bka1 open reading frame, controlled by the M. grisea MPG1 promoter, restored pathogenicity and appressorium maturation kinetics. The results provide, to our knowledge, the first functional genetic analysis of pathogenicity in an obligate pathogen and highlight the remarkable conservation of signaling components regulating infection-related development in pathogenic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号