首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Factors influencing rates of C and N mineralization of soil and plant materials, and the reliability of different procedures for estimating microbial biomass, were measured in a soil (Typic Dystrochrept) that had been restored under grazed pasture in a temperate environment for 10–11 years after 20 cm of the original topsoil had been removed by stripping. Rates of net N mineralization were appreciably lower, but CO2-C production higher, in the stripped than in the unstripped soil. These activities were not influenced directly by levels of soil mineral-N, but they were influenced by differences in plant composition. Herbage and litter, and roots, from the stripped plots were generally mineralized more readily to CO2-C, but more slowly to net mineral-N, than were the corresponding materials from the unstripped plots. Rates of mineralization of herbage and litter, or roots, were mainly indistinguishable in stripped and unstripped soil, whereas rates of mineralization of all standing dead material were lower in stripped soil. Measurements of extractable-C flush, and of CO2-C flush (using a fumigated soil control) and mineral-N flush by fumigation-incubation procedures, indicated that microbial biomass in stripped soil had recovered to at least 88 percent of the levels in unstripped soil. Substrate-induced respiration also generally indicated high levels of recovery of microbial biomass. The fumigation-incubation procedure appeared to under-estimate microbial biomass markedly in stripped soil when unfumigated soil controls were used; the used of a large soil inoculum (20 percent w/w) only sometimes overcame this problem. Possible reasons for apparent anomalies in estimation of microbial C are discussed.  相似文献   

2.
Temporal variations in plant production, plant P and some soil P (and N) pools were followed over 21 months in two New Zealand pasture soils of widely different P fertility status. Plant growth rates, and herbage composition at the high-fertility site, were closely linked to soil water use, with growth rates falling when soil water deficits exceeded 60 mm. Herbage P concentrations reflected P fertility, and varied with season, being generally higher in winter and lower in summer. A similar temporal pattern was also observed for labile organic P (NaHCO3-extractable P0) in both soils. In the low-fertility soil in spring, net mineralization was especially strong, but from early winter net immobilization occurred. Surprisingly, Olsen P also changed temporally in the high-fertility soil. The microbial biomass remained fairly constant throughout the year, whereas the P content of the biomass varied seasonally. Although microbial biomass was not a useful index of soil fertility, highest microbial P0 contents coincided with periods of maximum labile P0 mineralization, when herbage production was also at a peak. Net N-mineralization in the low-fertility soil, in contrast to the high-fertility soil, was low but varied seasonally, under standardised incubation conditions. Soil P and N dynamics were apparently synchronised in the low-fertility soil through soil microbial processes, with mineral N being negatively correlated with microbial P0 in samples collected two months later. The results of this investigation suggest that the demands of rapid and sustained pasture growth in spring and early summer can best be met by maximising the build-up of organic matter during the preceding autumn and winter. This practice could help to alleviate the common problem of feed shortage in North Island hill country pastures in late winter-early spring.  相似文献   

3.
There is an increasing demand for the sustainable management of old-field communities in northern China, which have developed on abandoned cropland on formerly converted natural steppe sites, to regain forage yield, biodiversity, and soil fertility. In thus study we examined how two management options—clipping and nitrogen (N) addition—may affect net >microbial N mineralization (ammonification?+?nitrification), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial respirations (MR) in grass dominated, herb dominated, and grass-herb mixed patches in an old-field community in northern China.Topsoil (0–10 cm) net N mineralization rate was 177% and 69% higher in mixed grass and herb patches (patch B) as compared to unmixed grass (patch A) or herb (patch C) patches, respectively. Topsoil MBN was significantly different among the three patches with the highest value for soils taken from umixed grass patches. However, patches with mixed grass and herb or herb dominated patches had 12% higher microbial respiration (MR) than unmixed grass patch. Clipping and N addition had no effects on net N mineralization or MBC, but both treatments decreased MBN and MR and increased the ratio between microbial biomass C and microbial biomass N (MBC/MBN) in the growing season. Incubation of soil cores under optimal water and temperature conditions in the laboratory showed that the response of microbial N transformations in soils under different vegetation patches to experimental N addition and clipping was limited by soil water availability. Our results strongly highlight the need to further study the importance of belowground C supply as a control of microbial N cycling processes. It also suggests that during the restoration process of degenerated croplands N cycling rates are stimulated, but that the magnitude of this stimulation is modulated by plant community composition of the old-fields.  相似文献   

4.
Grass species and soil type effects on microbial biomass and activity   总被引:15,自引:0,他引:15  
We evaluated plant versus soil type controls on microbial biomass and activity by comparing microbial biomass C, soil respiration, denitrification potential, potential net N mineralization and nitrification in different soils supporting four grass species, and by growing a group of 10 different grass species on the same soil, in two experiments respectively. In the first experiment, none of the microbial variables showed significant variation with grass species while all variables showed significant variation with soil type, likely due to variation in soil texture. In the second experiment, there were few significant differences in microbial biomass C among the 10 grasses but there were significant relationships between variation in microbial biomass C and potential net N mineralization (negative), soil respiration (positive) and denitrification (positive). There was no relationship between microbial biomass C and either plant yield or plant N concentration. The results suggest that 1) soil type is a more important controller of microbial biomass and activity than grass species, 2) that different grass species can create significant, but small and infrequent, differences in microbial biomass and activity in soil, and 3) that plant-induced variation in microbial biomass and activity is caused by variation in labile C input to soil.  相似文献   

5.
Given the same amount of irrigation volume, applying alternate partial root-zone irrigation (PRI) has improved crop N nutrition as compared to deficit irrigation (DI), yet the mechanisms underlying this effect remain unknown. Therefore, the objective of this study was to investigate whether PRI induced soil dry/wet cycles facilitate soil organic N mineralization hereby contributing to the improvement of N nutrition in tomatoes. The plants were grown in split-root pots in a climate-controlled glasshouse and were subjected to PRI and DI treatments during early fruiting stage. 15N-labeled maize residues were incorporated into the soils. Results showed that PRI resulted in 25% higher net 15N mineralization than did DI, indicating that the enhanced mineralization of soil organic N alone could account for the 16% increase of N accumulation in the PRI than in the DI plants. The higher net N mineralization under PRI was coincided with an intensified soil microbial activity. In addition, even though soil chloroform fumigation labile carbon (CFL-C, as an index of microbial biomass) was similar for the two irrigation treatments, a significant increase of chloroform fumigation labile nitrogen (CFL-N) was found in the PRI wetting soil. Consequently, the C:N ratio of the chloroform fumigation labile pool was remarkably modified by the PRI treatment, which might indicate physiological changes of soil microbes or changes in labiality of soil organic C and N due to the dry/wet cycles of soils, altering conditions for net N mineralization. Moreover, in both soil compartments PRI caused significantly less extractable organic carbon (EOC) as compared with DI; whilst in the PRI wetting soil significantly higher extractable organic nitrogen (EON) was observed. A low EOC:EON ratio in the PRI wetting soil may indicate an increasing net mineralization of the organic N as a result of microbial metabolism. Conclusively, PRI induced greater microbial activity and higher microbial substrates availability are seemingly responsible for the enhanced net N mineralization and improved N nutrition in tomato plants.  相似文献   

6.
Four biochar types, produced by slow pyrolysis of poultry litter (PL) and pine chips (P) at 400 or 500 °C, were added to two adjacent soils with contrasting soil organic matter (SOM) content (8.9 vs. 16.1 g C kg?1). The N mineralization rate was determined during 14‐week incubations and assessments were made of the microbial biomass C, dehydrogenase activity, and the microbial community structure (PLFA‐extraction). The addition of PL biochars increased the net N mineralization (i.e., compared to the control treatment) in both soils, while for treatments with P biochars net N immobilization was observed in both soils. Increasing the pyrolysis temperature of both feedstock types led to a decrease in net N mineralization. The ratio of Bacterial to Fungal PLFA biomarkers also increased with addition of biochars, and particularly in the case of the 500 °C biochars. Next to feedstock type and pyrolysis temperature, SOM content clearly affected the assessed soil biological parameters, viz. net N mineralization or immobilization, MBC and dehydrogenase activity were all greater in the H soil. This might be explained by an increased chance of physical contact between the microbial community activated by SOM mineralization upon incubation and discrete biochar particles. However, when considering the H soil's double C and N content, these responses were disproportionally small, which may be partly due to the L soil's, somewhat more labile SOM. Nonetheless, increasing SOM content and microbial biomass and activity generally appears to result in greater mineralization of biochar. Additionally, higher N mineralization after PL addition to the H soil with lower pH than the L soil can be due to the liming effect of the PL biochars.  相似文献   

7.
In an effort to elucidate the factors affecting soil N dynamics in the Dry Chaco ecosystem, soil respiration and microbial biomass N were measured for one year underneath 5 vegetation types: a leguminous tree (Prosopis flexuosa DC), a non-leguminous tree (Aspidosperma quebracho-blanco Schlecht.), a non leguminous shrub (Larrea spp.), the open interspaces, and a pure grassland. Ammonifier and nitrifier densities and N content in litter were also measured in some cases. Results were compared with previously reported N mineralization rates and soil fertility.During the dry season microbial biomass N and net N mineralization were low, while accretion of easily mineralizable C occurred (estimated through soil respiration rates in lab under controlled temperature and moisture). With the onset of rain, microbial biomass N and N mineralization increased markedly, resulting in a decrease in easily mineralizable C. Throughout the wet season N mineralization varied with soil moisture while microbial biomass N remained consistently high. Mean values of immobilized N in this ecosystem were high (20–140 mg kg–1), of about the same order of magnitude as accumulated net N mineralization (50–150 mg kg–1 yr–1). Microbial decay in the dry season, considered as a source of easily mineralizable N, accounted for only 40% of gross N mineralization increase at the beginning of the wet season. Ammonifier densities correlated significantly with soil moisture and N mineralization, but nitrifiers did not.The highest values of total N, N mineralization, inorganic N, microbial biomass N, nitrifier densities, N content in litter, total organic C and easily mineralizable C were found under Prosopis and the lowest values under shrubs and the interspaces. The main differences between tree species were in N mineralization at the beginning of the wet season, in total and inorganic N pools, and in nitrifier densities; all of which were significantly lower under Aspidosperma than under Prosopis.N mineralization in the pure grassland was very low despite high values of total N and C sources. Although N immobilized in microbial biomass was similarly high under Aspidosperma, Prosopis and the pure grassland, net N mineralization rates were quite different.  相似文献   

8.
有机物料在维持土壤微生物体氮库中的作用   总被引:51,自引:2,他引:49  
李世清  李生秀 《生态学报》2001,21(1):136-142
采用室内和田间培养试验,研究了有机物料矿化过程中土壤微生物体氮的变化,测定结果表明,有机物料对矿化过程和微生物体氮的影响,既与有机物料本身性质和组成有关,也与土壤肥力水平和施氮与否有关。加入C/N比高的有机物料后,微生物对矿质氮的净固定持续时间长,而加入C/N比小的则固定时间短;高肥力土壤上的固定时间比低肥力土壤短。不同有机物料对土壤微生物体氮的影响不同。从加绿豆茎叶、小麦茎叶、未腐解马粪、腐熟马粪、腐熟猪粪到厩肥,土壤微生物体氮依次减小,提供的有效能源物质丰富(如绿豆茎叶)或C/N比较高(如小麦茎叶)时影响效果突出。土壤肥力不同,有机物料对微生物体的影响效果不同,在低肥力土壤的效果突出,约为高肥力土壤的4倍,因此,在评价有机物料对土壤微生物体氮的影响时,既考虑有有机物料的性质和组成,也考虑土壤力水平、矿质氮含量和培养时期。  相似文献   

9.
通过对秦岭山区日本落叶松、油松、灰楸和锐齿栎4种典型人工纯林2年的枯落叶客置试验,探讨了枯落叶客置对土壤生物、化学性质的影响,以及不同树种的种间关系.结果表明:阔叶林枯落叶的年分解速率高出针叶林33.70%.当针叶林枯落叶被客置到阔叶林地后,年分解速率提高8.35%~12.15%,而当阔叶林枯落叶被客置到针叶林地后,年分解速率下降5.38%~9.49%.针阔树种间的枯落叶客置均能不同程度地提高土壤有机碳、速效氮、速效磷和速效钾的含量,且针叶林地的增幅(8.70%~35.84%)明显大于阔叶林地(3.73%~10.44%),其中针叶林地客置灰楸枯落叶后的增幅(24.63%~35.84%)大于客置锐齿栎枯落叶(8.70%~28.15%). 客置阔叶林枯落叶使针叶林地土壤由偏酸向中性方向发展, 土壤酶活性、微生物量C、N含量及其微生物数量提高,其中,客置灰楸枯落叶的增幅大于客置锐齿栎枯落叶;客置针叶林枯落叶后阔叶林地土壤酶活性、微生物量C、N含量及其微生物数量变化因树种而异,其中锐齿栎林地土壤酶活性和微生物量C、N含量有所提高,而灰楸林地却有所下降.客置阔叶林地枯落叶可改善针叶林地的土壤性质,而客置针叶林枯落叶后阔叶林地的效应则因树种而异.说明在人工纯林土壤退化的防治过程中,引入其他树种形成混交林或进行枯落叶客置都应注意种间关系的方向性.  相似文献   

10.
Y. L. Hu  S. L. Wang  D. H. Zeng 《Plant and Soil》2006,282(1-2):379-386
The quality of leaf litter can control decomposition processes and affect the nutrient availability for plant uptake. In this study, we investigated the effect of single leaf litter (Chinese fir – Cunninghamia lamcealata (Lamb.) Hook) and mixed leaf litters (C. lamcealata, Liquidamba formosana Hance and Alnus cremastogyne Burk) on soil chemical properties, soil microbial properties and soil enzyme activities during 2 years decomposition. The results showed that soil microbial biomass C, the ratio of soil microbial biomass C to total soil organic C (soil microbial quotient, Cmic/Corg) and soil enzymes (urease, invertase, dehydrogenase) activities increased significantly in mixed leaf litters treatments whereas soil chemical properties remained unchanged. However, soil microbial metabolic quotient (qCO2) values and soil polyphenol oxidase activity were higher in the single Chinese fir leaf litter treatment that had a higher C:N (carbon:nitrogen) ratio (79.53) compared with the mixed leaf litter (C:N ratios of 76.32, 56.90, 61.20, respectively). Our results demonstrated that the mixed leaf litter can improve forest soil quality, and that soil microbial properties and soil enzyme activities are more sensitive in response to litter quality change than soil chemical properties.  相似文献   

11.
The aim of our study was to investigate long-term effects of wood ash fertilization, given together with nitrogen, on soil chemical properties, soil microbiological processes related to C and N cycling, and tree growth. The study was carried out in a 31-year-old Scots pine stand and in a 45-year-old Norway spruce stand 15 years after application. The treatments were (1) a control with no ash or nutrient addition, (2) wood ash + N (WAN), and (3) a stand-specific fertilization (SSF) formulated on the basis of analyses carried out on needle and soil samples taken from the stand. The SSF treatments included N, Cu and B, and in the spruce stand also P. WAN decreased acidity and increased the extractable Ca, Mg and P concentrations in the organic layer in both stands, but SSF had no effect. The microbial processes reacted more strongly to the treatments in the pine stand, whereas the growth response, although only relatively slight during the third 5-year period after fertilization, was detected only in the spruce stand. WAN increased the NH4-N concentrations in the organic layer compared to the control and SSF treatments on both sites. In the pine stand, amount of N in microbial biomass and both the C and net N mineralization rates were significantly higher in the WAN treatment than in the SSF treatment. On both sites net nitrification was negligible in all treatments. Soil microbial biomass, microbial respiration and N availability have been used as indices for assessing the biological activity and health of soil, and these parameters either increased or were not affected by the WAN treatment. Hence, with regard to these parameters there are justifiable grounds for applying wood ash.  相似文献   

12.
Evaluating, and possibly ameliorating, the effects of base cation depletion in forest soils caused by acid deposition is an important topic in the northeastern United States. We added 850 kg Ca ha−1 as wollastonite (CaSiO3) to an 11.8-ha watershed at the Hubbard Brook Experimental Forest (HBEF), a northern hardwood forest in New Hampshire, USA, in fall 1999 to replace calcium (Ca) leached from the ecosystem by acid deposition over the past 6 decades. Soil microbial biomass carbon (C) and nitrogen (N) concentrations, gross and potential net N mineralization and nitrification rates, soil solution and stream chemistry, soil:atmosphere trace gas (CO2, N2O, CH4) fluxes, and foliar N concentrations have been monitored in the treated watershed and in reference areas at the HBEF before and since the Ca addition. We expected that rates of microbial C and N cycle processes would increase in response to the treatment. By 2000, soil pH was increased by a full unit in the Oie soil horizon, and by 2002 it was increased by nearly 0.5 units in the Oa soil horizon. However, there were declines in the N content of the microbial biomass, potential net and gross N mineralization rates, and soil inorganic N pools in the Oie horizon of the treated watershed. Stream, soil solution, and foliar concentrations of N showed no response to treatment. The lack of stimulation of N cycling by Ca addition suggests that microbes may not be stimulated by increased pH and Ca levels in the naturally acidic soils at the HBEF, or that other factors (for example, phosphorus, or Ca binding of labile organic matter) may constrain the capacity of microbes to respond to increased pH in the treated watershed. Possible fates for the approximately 10 kg N ha−1 decline in microbial and soil inorganic pools include components of the plant community that we did not measure (for example, seedlings, understory shrubs), increased fluxes of N2 and/or N storage in soil organic matter. These results raise questions about the factors regulating microbial biomass and activity in northern hardwood forests that should be considered in the context of proposals to mitigate the depletion of nutrient cations in soil.  相似文献   

13.
Tu C  Koenning SR  Hu S 《Microbial ecology》2003,46(1):134-144
Obligate root-parasitic nematodes can affect soil microbes positively by enhancing C and nutrient leakage from roots but negatively by restricting total root growth. However, it is unclear how the resulting changes in C availability affect soil microbial activities and N cycling. In a microplot experiment, effects of root-parasitic reniform nematodes (Rotylenchulus reniformis) on soil microbial biomass and activities were examined in six different soils planted with cotton. Rotylenchulus reniformis was introduced at 900 nematodes kg–1 soil in May 2000 prior to seeding cotton. In 2001, soil samples were collected in May before cotton was seeded and in November at the final harvest. Extractable C and N were consistently higher in the R. reniformis treatments than in the non-nematode controls across the six different soils. Nematode inoculation significantly reduced microbial biomass C, but increased microbial biomass N, leading to marked decreases in microbial biomass C:N ratios. Soil microbial respiration and net N mineralization rates were also consistently higher in the nematode treatments than in the controls. However, soil types did not have a significant impact on the effects of nematodes on these microbial parameters. These findings indicate that nematode infection of plant roots may enhance microbial activities and the turnover of soil microbial biomass, facilitating soil N cycling. The present study provides the first evidence about the direct role of root-feeding nematodes in enhancing soil N mineralization.  相似文献   

14.
Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building block of chitin, N-acetylglucosamine (NAG)) could be a significant source of C or N to the soil microbiota, and thus an important driver of microbial C and N processing. This paper reports the results of incubation experiments initiated to measure chitin degradation, NAG utilization, and the contribution of these substrates to soil respiration and N mineralization rates in mat-colonized and non-mat soil organic horizons. Amendments of chitin and NAG stimulated respiration, N mineralization, and biomass accumulation in mat and non-mat soils, and responses to NAG amendment were stronger than to chitin amendment. NAG-induced respiration was consistently two-fold higher in mat soils than non-mat soils, but induced N mineralization was similar between the two soil patch types. Assimilation of both C and N into microbial biomass was apparent, biomass C:N ratio decreased in all treatments, and microbial N use efficiency (treatment means 0.25 ± 0.06–0.50 ± 0.05) was greater than C use efficiency (treatment means 0.12 ± 0.04–0.32 ± 0.02). NAGase enzyme response was non-linear and showed the same pattern in chitin and NAG amendments. Responses to NAG and chitin amendment differed between mat and non-mat soils, indicating different mechanisms driving NAG and chitin utilization or differences in saprotrophic community composition between the two soil patch types. Net chitin and NAG processing rates were 0.08–3.4 times the basal respiration rates and 0.07–14 times the ambient net N mineralization rates, high enough for the turnover of total soil amino sugars to potentially occur in days to weeks. The results support the hypotheses that amino sugars are important microbial C and N sources and drivers of C and N cycling in these soils.  相似文献   

15.
Microorganisms are largely responsible for soil nutrient cycling and energy flow in terrestrial ecosystems. Although soil microorganisms are affected by topography and grazing, little is known about how these two variables may interact to influence microbial processes. Even less is known about how these variables influence microorganisms in systems that contain large populations of free-roaming ungulates. In this study, we compared microbial biomass size and activity, as measured by in situ net N mineralization, inside and outside 35- to 40-year exclosures across a topographic gradient in northern Yellowstone National Park. The objective was to determine the relative effect of topography and large grazers on microbial biomass and nitrogen mineralization. Microbial C and N varied by almost an order of magnitude across sites. Topographic depressions that contained high plant biomass and fine-textured soils supported the greatest microbial biomass. We found that plant biomass accurately predicted microbial biomass across our sites suggesting that carbon inputs from plants constrained microbial biomass. Chronic grazing neither depleted soil C nor reduced microbial biomass. We hypothesize that microbial populations in grazed grasslands are sustained mainly by inputs of labile C from dung deposition and increased root turnover or root exudation beneath grazed plants. Mineral N fluxes were affected more by grazing than topography. Net N mineralization rates were highest in grazed grassland and increased from dry, unproductive to mesic, highly productive communities. Overall, our results indicate that topography mainly influences microbial biomass size, while mineral N fluxes (microbial activity) are affected more by grazing in this grassland ecosystem. Received: 4 June 1997 / Accepted: 16 December 1997  相似文献   

16.
以羊草(Leymus chinensis)-内生真菌共生体为研究对象, 分别在野外样地和室内盆栽两种实验条件下研究了内生真菌感染对土壤特性和微生物群落结构的影响。结果显示:在处理时间较长并伴随有枯落物分解的羊草样地中, 内生真菌感染促进了土壤氮(N)的积累, 提高了30天培养时间内土壤初始碳(C)矿化速率和前3天土壤矿化量和土壤矿化总量; 而在处理时间较短且没有地上枯落物分解的盆栽羊草中, 内生真菌感染对土壤的C、N含量及C矿化均无显著影响。无论是野外样地还是室内盆栽实验, 内生真菌感染均未引起土壤微生物磷脂脂肪酸种类的变化, 但内生真菌感染均有提高土壤微生物生物量的趋势, 内生真菌显著增加了盆栽羊草土壤中细菌、革兰氏阴性细菌、真菌磷脂脂肪酸含量和磷脂脂肪酸总量, 增加了羊草样地土壤中革兰氏阳性细菌和放线菌的磷脂脂肪酸含量。总体看来, 内生真菌感染能够改变土壤N积累和C矿化率, 并且改变土壤中微生物群落的结构, 这有助于进一步认识内生真菌与羊草之间的共生关系及其在生态系统C、N循环中所起的作用。  相似文献   

17.
The soil dynamics of old-fields, characterized by the early establishment of broom (Cytisus scoparius L.), is analysed in the Breton bocage. The role of former land use practices is estimated by comparing two similar plant successions, post cultivation and post pasture. Different variables (organic matter, mineral N content, microbial biomass, total microbial activity and mineralization) are measured within the soil layer disturbed by farming (between –5 and –25 cm). One year after abandonment, the parameters taken into account show similar values for both series. After 8 years, in broom thickets, the two soil series are characterized by an increase in microbial activity, organic matter and mineral N contents. However, the post cultivation thicket differed by higher N content and mineralization rate than the post pasture thicket, but also by a smaller microbial biomass. It appears that, if the development of similar vegetational communities promotes the same kind of soil dynamics, the former land use practices significantly modify this evolution, for at least the first 8 years following abandonment.  相似文献   

18.
Crop residue-derived dissolved organic matter (DOM) plays an important role in soil carbon (C) cycling. To investigate the effects of maize residue-derived DOM and urea additions on the native soil organic carbon (SOC) decomposition and soil net C balance a pot experiment was carried out during the winter wheat growing season in the North China Plain (NCP). The results showed that adding maize residue-derived DOM alone (RDOM) or together with urea (RDOM?+?N) accelerated the decomposition of native SOC and resulted in a net SOC loss. The net loss of SOC was 3.90?±?0.61 and 3.53?±?0.48?g?C?m?2 in RDOM and RDOM?+?N treatments, respectively. The stimulatory effect of per unit DOM-C addition on the native SOC decomposition was 0.25?±?0.05 and 0.45?±?0.07 for the RDOM and RDOM?+?N treatments, respectively. Increases in the microbial biomass and the activity of β-glucosidase, invertase and cellobiohydrolase as well as soil mineral N content were responsible for a more intense priming effect in DOM-amended soils. The positive relationship between primed soil C and soil available N (R?=?0.76, P?<?0.05) suggested that the stimulation of decomposition of native SOC by DOM addition would be enhanced by nitrogen fertilizer application.  相似文献   

19.
为了解不同植被类型对土壤微生物生物量和土壤酶活性的影响,以黄土高原纸坊沟流域的9种植物为研究对象,选取撂荒地为参照,分析了各类植被植物根际土土壤微生物生物量、土壤酶活性及其与土壤理化因子的相关性.结果显示:(1)与撂荒地相比,经过植被恢复后,乔木和灌木植被下土壤肥力、微生物生物量和土壤酶活性均有所提高,而草本植被下土壤的碱解氮含量、微生物生物量磷、脲酶活性和过氧化氢酶活性却有所降低.(2)不同植被类型土壤微生物生物量碳和氮、蔗糖酶和碱性磷酸酶活性符合灌木>乔木>草本的规律;土壤微生物生物量磷、脲酶和过氧化氢酶活性符合乔木>灌木>草本的规律.(3)土壤微生物生物量碳、氮、磷与土壤有机质、全氮及全磷含量呈极显著正相关;4种土壤酶活性与土壤有机质、全氮及碱解氮含量呈极显著正相关.研究表明,黄土高原纸坊沟流域土壤微生物生物量和土壤酶活性受植被类型及土壤养分等因素的共同影响,且人工灌木植被对土壤的恢复作用高于乔木和草本植被.  相似文献   

20.

Aims

Litter, as afterlife of plants, plays an important role in driving belowground decomposition processes. Here we tested effects of litter species identity and diversity on carbon (C) and nitrogen (N) dynamics during litter decomposition in N-limited alpine meadow soil from the Qinghai–Tibet Plateau.

Methods

We incubated litters of four meadow species, a sedge (“S”, Kobresia humilis), a grass (“G”, Elymus nutans), a herb (“H”, Saussurea superba), and a legume (“L”, Oxytropis falcata), in monoculture and in mixture with meadow soil. CO2 release was measured 21 times during the incubation, and soil available N and microbial biomass C and N were measured before and after the experiment.

Results

The organic C decay rate did not differ much among soils amended with monocultures or mixtures of litter, except in the H, S, L, and S+H treatments, which had much higher decay rates. Potential decomposable C pools were lowest in the control, highest in the L treatment, and intermediate in the S treatment. Mineralized N was completely immobilized by soil microbes in all treatments except the control, S+L, and S+G+L treatments. Litter mixtures had both additive and non-additive effects on CO2-C emission (mainly antagonistic effects), net N mineralization (mainly synergistic), and microbial biomass C and N (both). Overall, these parameters were not significantly correlated with litter species richness. Similarly, microbial C or N was not significantly correlated with litter N content or C/N. However, cumulative CO2-C emission and net N mineralization were positively correlated with litter N content and negatively correlated with litter C/N.

Conclusions

Litter N content and C/N rather than litter species richness drove the release of CO2-C and net available N in this ecosystem. The antagonistic effects of litter mixtures contributed to a modest release of CO2-C, but their synergistic effects enhanced net available N. We suggest that in alpine meadow communities, balancing species with high and low N contents will benefit soil carbon sequestration and plant competition for available N with soil microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号