首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tomato chlorosis virus (ToCV), which is a newly emerged and rapidly spreading plant virus in China, has seriously reduced tomato production and quality over the past several years. In this study, the effect of ToCV on the demography of the whitefly, Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae), fed on infected and healthy tomato plants was evaluated using the age‐stage, two‐sex life table. When reared on ToCV‐infected tomato plants, the fecundity, length of oviposition period and female adult longevity of B. tabaci biotype Q decreased significantly, while the pre‐adult duration significantly increased compared to controls reared on healthy tomatoes. Consequently, the intrinsic rate of increase (r) and finite of increase (λ) of B. tabaci biotype Q on ToCV‐infected tomato plants significantly decreased compared to those on healthy tomatoes. Population projection predicted that a population of B. tabaci biotype Q fed on ToCV‐infected tomatoes increases slower than on healthy plants. These findings demonstrated that ToCV infection decreased the performance of B. tabaci biotype Q on tomato plants.  相似文献   

2.
Tomato chlorosis virus (ToCV) is a whitefly‐transmitted, phloem‐limited, bipartite Crinivirus. In 2012, severe interveinal symptoms characteristic of ToCV infections were observed in greenhouse tomato plants in the Shandong province of China. High levels of infestation by whiteflies (Bemisia tabaci), which transmit ToCV, were also observed on tomato plants in all the greenhouses investigated. The presence of ToCV was confirmed by specific RT‐PCR either in the sampled plants or in the whiteflies collected from the ventral surface of the leaves of diseased plants. The complete genomic nucleotide sequences (RNA1 and RNA2) of the Shandong isolate of ToCV (ToCV‐SDSG) were determined and analysed. ToCV‐SDSG RNA1 consisted of 8594 nucleotides encompassing four open reading frames (ORFs). ToCV‐SDSG RNA2 consisted of 8242 nucleotides encompassing nine ORFs. Phylogenetic analysis suggests that the Chinese ToCV‐SDSG isolate is most similar to the ToCV‐Florida isolate.  相似文献   

3.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

4.
Tomato chlorosis virus (ToCV) is a member of the genus Crinivirus in the family Closteroviridae. It has a wide host range and wide distribution, causing serious harm to the vegetable industry. The autophagy pathway plays an important role in plant resistance to virus infection. Viruses and plant hosts coevolve in defence and antidefence processes around autophagy. In this study, the interaction between ToCV p22 and Nicotiana benthamiana B-cell lymphoma2-associated athanogenes5 Nicotiana benthamiana (NbBAG5) was examined. Through overexpression and down-regulation of NbBAG5, results showed that NbBAG5 could negatively regulate ToCV infection. NbBAG5 was found to be localized in mitochondria and can change the original localization of ToCV p22, which is colocalized in mitochondria. NbBAG5 inhibited the expression of mitophagy-related genes and the number of autophagosomes, thereby regulating viral infection by affecting mitophagy. In summary, this study demonstrated that ToCV p22 affects autophagy by interacting with NbBAG5, established the association between viral infection, BAG proteins family, and the autophagy pathway, and explained the molecular mechanism by which ToCV p22 interacts with NbBAG5 to inhibit autophagy to regulate viral infection.  相似文献   

5.
6.
Southern tomato virus (STV) is a double‐stranded RNA (dsRNA) virus belonging to the genus Amalgavirus from the family Amalgamaviridae. STV has been detected in tomato plants showing symptoms of stunting, fruit discoloration and size reduction, although its role on symptom development is unclear. Also, little is known about the incidence and epidemiology of this virus and how it spreads in tomato crops. In this work, we developed a molecular hybridisation method by using a digoxigenin‐labelled RNA probe based on the nucleotide sequence of the STV putative coat protein which was tested with different procedures for preparation of plant material. This technique was sensitive enough to detect STV from sap extracts (obtained just by grinding in buffer) from different plant tissues such as leaves, fruits, roots and seeds. This procedure is suitable for field surveys since it allows a cheap and quick processing of a high number of samples. Surveys performed in three important tomato production areas (Peninsular Spain, the Canary Islands and Sicily) showed that STV is widely spread, with incidences ranging from 18% to 74% in different local and commercial tomato varieties.  相似文献   

7.
By comparing the partial nucleotide sequences of the heat shock protein HSP70 homologue gene, we assessed the genetic diversity of Brazilian tomato isolates of Tomato chlorosis virus (ToCV), as well as their relationship with other ToCV isolates found worldwide. The Brazilian ToCV isolates shared 99.9–100% nucleotide identity, which indicates low genetic diversity. Brazilian ToCV isolates showed a closer evolutionary relationship to those from Mediterranean countries. Based on these results, the origin of Brazilian ToCV isolates and the possible number of introductions of the virus into Brazil are discussed.  相似文献   

8.
Interveinal leaf chlorosis, brittleness, limited necrotic flecking or bronzing developed on greenhouse‐grown tobacco and tomato plants at Nanjing Agricultural University from 2010 to 2013. A positive RT‐PCR using a pair of degenerate primers for Crinivirus confirmed the diseased plants were infected with Tomato chlorosis virus (ToCV). The complete RNA 1 genomic sequence of this ToCV isolate was determined; it comprises of 8596 nucleotides with four open reading frames. Phylogenetic analysis of ToCV isolates from diverse geographical regions categorized the ToCV isolates into two main groups. Group one consisted of Chinese, American‐Florida, Greek and Brazilian isolates, while Group two contained only the Spanish isolate. The first group had two subgroups, one of Chinese and American‐Florida isolates, while the other subgroup had Greek and Brazilian isolates. This is the first study of the complete nucleotide sequence of the RNA 1 of ToCV isolated from China.  相似文献   

9.
丁天波  周雪  杨楠  杨炀  唐瑶  褚栋 《昆虫学报》2021,64(3):384-391
【目的】本研究以番茄褪绿病毒(tomato chlorosis virus, ToCV)和番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)为主体,旨在明确ToCV单独侵染及TYLCV&ToCV复合侵染对烟粉虱Bemisia tabaci MED隐种寄主适应性的影响,并从寄主植物营养成分和防御角度解析不同番茄病毒侵染对烟粉虱MED隐种寄主适应性影响的生理机制。【方法】ToCV单独侵染和TYLCV&ToCV复合侵染番茄植株后,统计分析番茄植株上烟粉虱MED隐种成虫存活率和产卵量以及番茄植株中氨基酸和总糖含量;通过RT-qPCR技术检测番茄植株茉莉酸(JA)信号通路关键基因(FAD7和PI II)以及水杨酸(SA)信号通路关键基因(NPR1和PR1)的表达模式。【结果】相对于取食健康番茄植株的烟粉虱成虫,取食番茄病毒侵染的番茄植株烟粉虱MED隐种成虫的存活率和产卵量均显著降低,其中以TYLCV&ToCV复合侵染番茄植株为寄主时,烟粉虱MED隐种成虫的存活率和产卵量均达到最低水平。TYLCV&ToCV复合侵染后,番茄植株中总氨基酸含量、14种水解氨基酸含量以及总糖含量低于ToCV单独侵染番茄植株。ToCV单独侵染和TYLCV&ToCV复合侵染番茄植株后,FAD7和PI II的表达量均显著降低,并且2个基因在TYLCV&ToCV复合侵染植株中的表达水平最低;然而,NPR1和PR1的表达水平在ToCV单独侵染和TYLCV&ToCV复合侵染番茄植株中均有上升趋势,TYLCV&ToCV复合侵染番茄植株中NPR1表达水平和ToCV单独侵染番茄植株中PR1表达水平均显著高于健康番茄植株中的。【结论】ToCV单独侵染和TYLCV&ToCV复合侵染均能够明显降低番茄植株上烟粉虱MED隐种的寄主适应性,且TYLCV&ToCV复合侵染更不利于烟粉虱MED隐种生存;相对于健康番茄植株,ToCV单独侵染和TYLCV&ToCV复合侵染番茄植株营养成分与防御系统发生了变化且存在差异。研究结果为揭示烟粉虱与植物病毒互作提供了参考。  相似文献   

10.
Virus‐like chlorotic symptoms were observed on tomato plants, cv. Velocity, grown in a greenhouse, region of Plovdiv. Samples collected from the leaves with interveinal yellowing and with initial interveinal chlorosis were tested for virus presence. Only the samples collected from the upper leaves with slight interveinal chlorosis were positive for Tomato infectious chlorosis virus (TICV) in indirect ELISA. Further, RT‐PCR analysis with specific primers for Tomato chlorosis virus (ToCV) heat shock protein 70, for TICV heat shock protein 70 and for TICV minor capsid protein was positive for TICV in all tested samples. No signals were obtained with primers for ToCV. Phylogenetic analysis showed that the Bulgarian sequence of Hsp70 and a sequence of Greek isolate clustered together having the highest resampling score. Regarding CPm, the Bulgarian isolate was more relevant to the French isolate. The obtained results from phylogenetic analysis supported the idea of a close relationship between the Bulgarian and Greek isolates.  相似文献   

11.
12.
To identify genes involved in resistance of tomato to Tomato yellow leaf curl virus (TYLCV), cDNA libraries from lines resistant (R) and susceptible (S) to the virus were compared. The hexose transporter LeHT1 was found to be expressed preferentially in R tomato plants. The role of LeHT1 in the establishment of TYLCV resistance was studied in R plants where LeHT1 has been silenced using Tobacco rattle virus-induced gene silencing (TRV VIGS). Following TYLCV inoculation, LeHT1-silenced R plants showed inhibition of growth and enhanced virus accumulation and spread. In addition, a necrotic response was observed along the stem and petioles of infected LeHT1-silenced R plants, but not on infected not-silenced R plants. This response was specific of R plants since it was absent in infected LeHT1-silenced S plants. Necrosis had several characteristics of programmed cell death (PCD): DNA from necrotic tissues presented a PCD-characteristic ladder pattern, the amount of a JNK analogue increased, and production of reactive oxygen was identified by DAB staining. A similar necrotic reaction along stem and petioles was observed in LeHT1-silenced R plants infected with the DNA virus Bean dwarf mosaic virus and the RNA viruses Cucumber mosaic virus and Tobacco mosaic virus. These results constitute the first evidence for a necrotic response backing natural resistance to TYLCV in tomato, confirming that plant defense is organized in multiple layers. They demonstrate that the hexose transporter LeHT1 is essential for the expression of natural resistance against TYLCV and its expression correlates with inhibition of virus replication and movement.  相似文献   

13.
The non-structural protein encoded by the M RNA segment (NSm) of tomato spotted wilt virus (TSWV) has been implicated in cell-to-cell movement of nucleocapsids through modified plasmodesmata. Recently, DnaJ-like proteins from Nicotiana tabacum (tobacco) and Arabidopsis thaliana have been identified as NSm interacting host proteins, implying an involvement of molecular chaperones during systemic spread of the virus or other, presently unknown NSm-mediated virus functions. Examination of additional TSWV host plants and improvement of yeast two-hybrid interaction trap experiments led to the isolation of a DnaJ-like protein from Lycopersicon esculentum (tomato) and the identification of a protein from A. thaliana sharing some homologies with myosin and kinesin-like polypeptides. Sequence alignments of the tomato DnaJ-like protein unveiled the corresponding gene as an orthologue to the tobacco and A. thaliana DnaJ genes, substantiating that NSm interacting DnaJ-like polypeptides, identified from three different TSWV host species, apparently form a subgroup distinct from archetypical DnaJ chaperones. Increased levels of DnaJ-like proteins could be detected in TSWV systemically infected leaves and in plants exposed to heat shock, showing that the NSm interacting DnaJ-like chaperones are inducible upon biotic and abiotic stress. All together, the identification of DnaJ-like proteins and a protein resembling myosin and kinesin as NSm interacting plant proteins is in accordance with results accomplished for movement proteins from other plant attacking viruses showing an involvement of molecular chaperones and the cytoskeleton in at least intracellular trafficking.  相似文献   

14.
The talc-based formulation of two Pseudomonas fluorescens strains (Pf1 and VPT10) and its mixture (with and without chitin) were tested against tomato leaf curl virus in tomato under greenhouse and field conditions. The mean percentage of tomato leaf curl virus infected plants were significantly lower (25%) with less symptom severity and delayed symptom expression up to nine additional days in Pseudomonas with chitin (VPT10 + chitin) treated tomato plants compared to non-bacterised control plants upon challenge inoculation with tomato leaf curl virus. Tomato leaf curl virus was partially purified and antiserum was developed. Using the antiserum the tomato leaf curl virus was detected in symptomatic leaves and in whitefly vector through direct antigen coating enzyme linked immunosorbent assay which revealed the low virus titre in Pseudomonas treated plants (VPT10 + chitin) and insect vector compared to untreated tomato plants. The results indicate the potentiality of plant growth promoting rhizobacteria strains and talc-powder formulations in the effective management of this tomato leaf curl virus in tomato under field conditions.  相似文献   

15.
In transmitting plant viruses, insect vectors undergo physiological and behavioral alterations. The whitefly Bemisia tabaci is a vector of tomato yellow leaf curl virus (TYLCV), causing severe damages to various horticultural crop plants. To determine whether whitefly alteration is specific to vector species, the responses to TYLCV ingestion were compared between B. tabaci and Trialeurodes vaporariorum, a nonvector for TYLCV. The two species were reared on TYLCV‐infected and noninfected tomato, a host of TYLCV, and their longevity and fecundity were determined while rearing in either tomato or eggplant, a nonhost of TYLCV. TYLCV‐ingested B. tabaci increased their developmental rates but reduced fecundity when they were reared in either tomato or eggplant compared with those of TYLCV‐free ones. In contrast, TYLCV‐ingested T. vaporariorum did not show any of the aforementioned changes when reared on both plant species. In addition, TYLCV‐ingested B. tabaci increased their levels of three heat shock protein genes ( hsp20, hsp70, and hsp90) against thermal stress, whereas TYLCV‐ingested T. vaporariorum did not. The presence of TYLCV virions was identified in two colonies of both species via polymerase chain reaction analysis. TYLCV was detected in the whole body, saliva, and eggs of B. tabaci, while TYLCV was detected only in the whole body but not in the saliva and eggs of T. vaporariorum. The present results strongly indicated that TYLCV specifically manipulate physiological processes of the vector species, B. tabaci.  相似文献   

16.
Studies on the occurrence of tomato bushy stunt virus in English rivers   总被引:4,自引:0,他引:4  
Tomato bushy stunt virus (TBSV) of unknown source was isolated from water of the River Thames, near Oxford. The isolate designated TBSV-T was mechanically transmissible to several tomato (Lycopersicon esculentum) cvs and to other species including Petunia hybrida, pepper (Capsicum annuum). eggplant (Solanum melongena), Nicotiana clevelandii, Chenopodium amaranticolor and C. quinoa in which it caused systemic symptoms. It caused no infection of globe artichoke (Cynara scolymus) or Pelargonium domesticum. The virus was not adsorbed to soil and could be isolated from leachate of soil in which systemically-infected tomato or C. quinoa plants were grown. Tomato plants became infected when grown in soil watered with virus suspensions. TBSV-T was infective after 10 min at 80°C but not at 90°C and when diluted to 10-5 but not to 10-6. Purified virus preparations contained C. 30 nm isometric particles. In gel-diffusion serological tests, TBSV-T reacted with homologous anti-serum and with antiserum to petunia asteroid mosaic virus but not to pelargonium leaf curl virus. Seed-borne infection (50–65%) of TBSV was demonstrated in plants grown from seed of symptomlessly-infected tomato fruit. TBSV was isolated from symptomlessly-infected tomato fruit imported from Morocco during October-April 1981. One of the isolates (TBSV-M) was indistinguishable from TBSV-T in host range, symptomatology and serological reactions. TBSV was also found in tomato plants growing extraneously in primary settlement beds at sewage works; such plants having been derived from undigested seeds in sewage. Because of its ‘alimentary-resistance’ in man, it is possible that one ecological route whereby TBSV enters rivers is by man's consumption of TBSV-infected tomatoes and eventual sewage dispersal into rivers.  相似文献   

17.
Modern‐day plants are subjected to various biotic and abiotic stresses thereby limiting plant productivity and quality. It has previously been reported that the use of a strong constitutive 35S cauliflower mosaic virus (CaMV) promoter to drive the expression of Arabidopsis CBF1 in tomato improved tolerance to cold, drought and salt loading, at the expense of growth and yield under normal growth conditions. Hence in the present study, the suitability of expressing the Arabidopsis CBF1 driven by three copies of an ABA‐responsive complex (ABRC1) from the barley HAV22 gene in order to improve the agronomic performance of the transgenic tomato plants was investigated. Northern blot analysis indicated that CBF1 gene expression was induced by chilling, water‐deficit and salt treatment in the transgenic tomato plants. Under these tested stress conditions, transgenic tomato plants exhibited enhanced tolerance to chilling, water‐deficit, and salt stress in comparison with untransformed plants. Under normal growing conditions the ABRC1‐CBF1 tomato plants maintained normal growth and yield similar to the untransformed plants. The results demonstrate the promise of using ABRC1‐CBF1 tomato plants in highly stressed conditions which will in turn benefit agriculture.  相似文献   

18.
Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus‐encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro‐Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2‐green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2‐GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)‐C2 displayed chlorotic lesions and stunted growth. PVX‐C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host‐defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3–2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3–2 gene and pNbCMT3–2::GUS (β‐glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation.  相似文献   

19.
Generalist herbivores can face many challenges when choosing their host plant. This can be particularly difficult if their choice and performance are affected by host experience. Greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is an invasive generalist herbivore, which has established in year‐round greenhouses at northern latitudes where it cannot overwinter outdoors. It mainly uses crops such as cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), and ornamentals as host plants. However, every summer the insect escapes greenhouses and is exposed to natural vegetation. We evaluated the performance of T. vaporariorum on diverse vegetation outside greenhouses after prolonged experience of greenhouse crops. First, we surveyed the vegetation near infested greenhouses. Development success of the insect differed among wild hosts. We identified five new hosts among 12 plant species that bore pupae and were thus considered suitable as the insect's host plants. Members of the Urticaceae and Onagraceae were the most preferred and frequently inhabited by all insect life stages. The highest abundance of insects occurred in plots with low plant species richness, independent of plant family in these habitats. We then studied experimentally the impact of 1 year of preconditioning to one of three common greenhouse crops, cucumber, tomato, or poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch), on the performance of the preconditioned adults and their progeny on four wild plants. Adults from tomato and poinsettia preferred the novel host species over the species to which they were preconditioned. The whitefly population preconditioned to cucumber was the most fecund on all offered hosts. We conclude that generalist herbivores can have large variation in performance, despite polyphagy, on novel hosts as shown by the variable abundance of T. vaporariorum pupae among outdoor hosts. Furthermore, performance of whiteflies on natural vegetation was affected by experience on greenhouse crops. Based on our observations, we provide insights and recommendations for pest management.  相似文献   

20.
Olive latent virus 1 (OLV-1) is a species of the Necrovirus genus. So far, it has been reported to infect olive, citrus tree and tulip. Here, we determined and analysed the complete genomic sequence of an isolate designated as CM1, which was collected from tomato plant in the Wielkopolska region of Poland and represents the prevalent isolate of OLV-1. The CM1 genome consists of monopartite single-stranded positive-sense RNA genome sized 3,699 nt with five open reading frames (ORFs) and small inter-cistronic regions. ORF1 encodes a polypeptide with a molecular weight of 23 kDa and the read-through (RT) of its amber stop codon results in ORF1 RT that encodes the virus RNA-dependent RNA polymerase. ORF2 and ORF3 encode two peptides, with 8 kDa and 6 kDa, respectively, which appear to be involved in cell-to-cell movement. ORF4 is located in the 3′ terminal and encodes a protein with 30 kDa identified as the viral coat protein (CP). The differences in CP region of four OLV-1 isolates whose sequences have been deposited in GenBank were observed. Nucleotide sequence identities of the CP of tomato CM1 isolate with those of olive, citrus and tulip isolates were 91.8%, 89.5% and 92.5%, respectively. In contrast to other OLV-1 isolates, CM1 induced necrotic spots on tomato plants and elicited necrotic local lesions on Nicotiana benthamiana, followed by systemic infection. This is the third complete genomic sequence of OLV-1 reported and the first one from tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号