首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature.  相似文献   

2.
Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.  相似文献   

3.
Systematic studies on the Mg distributions, the crystal orientations, the formation mechanisms and the mechanical properties of biogenic high-Mg calcites in different marine organisms were summarized in detail in this review. The high-Mg calcites in the hard tissues of marine organisms mentioned generally own a few common features as follows. Firstly, the Mg distribution is not uniform in most of the minerals. Secondly, high-Mg calcite biominerals are usually composed of nanoparticles that own almost the same crystallographic orientations and thus they behave like single crystals or mesocrystals. Thirdly, the formation of thermodynamically unstable high-Mg calcites in marine organisms under mild conditions is affected by three key factors, that is, the formation of amorphous calcium (magnesium) carbonate precursor, the control of polymorph via biomolecules and the high Mg/Ca ratios in modern sea. Lastly, the existence of Mg ions in the Mg-containing calcite may improve the mechanical properties of biogenic minerals. Furthermore, the key progress in the synthesis of high-Mg calcites in the laboratory based on the formation mechanisms of the biogenic high-Mg calcites was reviewed. Many researchers have realized the synthesis of high-Mg calcites in the laboratory under ambient conditions with the help of intermediate amorphous phase, mixed solvents, organic/inorganic surfaces and soluble additives. Studies on the structural analysis and formation mechanisms of thermodynamically unstable biogenic high-Mg calcite minerals may shed light on the preparation of functional materials with enhanced mechanical properties.  相似文献   

4.
Two crystal forms of calcium carbonate were observed: calcite (utricle) and aragonite (saccule, lagena, endolymphatic sac). The first step in otolith formation is the appearance of organic structures in the macula. The subsequent step is characterized by fast growing primitive crystals with a prismatic habitus that successively transform into adult or mature crystals. With the metamorphosis, the aragonite crystals of the endolymphatic organ show clear signs of erosion that can be related to a process of CaCO3 mobilization from such deposits.  相似文献   

5.
Although marine waters are usually found to be supersaturatedwith respect to both calcite and aragonite, natural precipitationof these carbonate minerals is very restricted. This is apparentlydue to the occupancy and effective removal of lattice sitesby random organic molecules present in natural seawater. Despite this, many marine organisms build external shells orskeletons of calcium carbonate, utilizing various ingeniousmethods to prevent seawater contamination at the growing shellmargin. The periostracum, which apparently evolved as an aidto marginal calcification, has undergone numerous modificationsserving important secondary functions inspecialized groups.  相似文献   

6.
Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.  相似文献   

7.
Summary The otoliths of embryos and young animals of the lizard Podarcis s. sicula were studied by X-ray diffraction and scanning electron microscopy. Two types of crystal that give different X-ray diffraction patterns were found in the membranous labyrinth of Podarcis. The crystals consist of calcite or aragonite and are easily distinguished by scanning electron microscopy because of their different morphology. The two calcium carbonate crystal forms are not mixed at random but are present in the embryo from the very beginning in specific sites. The endolymphatic sac contains aragonite crystals while the saccule contains calcite crystals adjacent to the wall, in addition to a preponderance of aragonite crystals. The utricle and lagena contain only calcite crystals. The presence of two crystal forms of calcium carbonate in the membranous labyrinth are discussed in terms of differing genetic and functional significance.  相似文献   

8.
This article presents a research study on carbonate formation in solid and liquid media by Thalassospira sp., Halomonas sp., Bacillus pumilus, and Pseudomonas grimontii, four bacterial strains isolated from sediments and deep seawater. As part of this study, we analyzed carbonic anhydrase activity, pH, adsorption of calcium and magnesium ions, and total organic and inorganic carbon. The geochemical program PHREEQC was also used to calculate the mineral saturation indexes in all the cultures. The minerals formed were studied with X-ray diffraction, X-ray dispersive energy microanalysis, and scanning electron microscopy. In addition, all four bacterial strains were found to induce carbonate precipitation and to have carbonic anhydrase activity. Sterile control experiments did not precipitate carbonate. In solid M1 and B4 media, all of the strains precipitated magnesium calcite, whereas in the liquid media, they precipitated different percentages of magnesium calcite, aragonite, and monohydrocalcite. In both cases, small amounts of amorphous precipitates were also produced. This article discusses carbonate formation and the possible role played by metabolic activity, bacterial surfaces and carbonic anhydrase in this process. Finally, the results obtained lead to a hypothesis regarding the importance of carbonate precipitation for the survival of bacteria populations in certain habitats.  相似文献   

9.
The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions—primarily in the molar ratio of magnesium and calcium during so-called ‘Calcite’ (mMg:mCa below 2) or ‘Aragonite’ seas (mMg:mCa above 2)—have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral Heliopora coerulea and the aragonitic scleractinian Montipora digitata were exposed to Calcite Sea-like mMg:mCa with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO3 polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower mMg:mCa ratios, while concurrent calcite presence was only detected in M. digitata. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the M. digitata skeleton organic matrix (SkOM), was found to consistently change at lower mMg:mCa. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater mMg:mCa. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in H. coerulea in one experimental replicate and at an mMg:mCa of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered mMg:mCa.  相似文献   

10.
Morphology of carbonate crystals grown on the surface of artificial cell membranes was controlled by changing the interfacial chemistry. For octadecyltriethoxysilane (OTE) films with terminal methyl groups interacting little with an aqueous calcium carbonate solution, calcite (104) crystals were formed. Polymerized pentacosadiynoic acid (PDA) films with terminal carboxylic acid groups induced deposition of calcite (012) crystals aligned along with each other within a polymer domain. On the other hand, stearyl alcohol (StOH) films with terminal hydroxyl groups induced deposition of aragonite crystals. When PDA was mixed with StOH, the 8∶1 PDA∶StOH (molar ratio) film produced dominating calcite (012) crystals without any crystal alignment, and the 4∶1 mixture film produced minor calcite (012) crystals and major aragonite crystals. For the 2∶1, 1∶1, 1∶2, and 1∶4 mixture films, aragonite crystals were dominating. Hence, it is found that the chemical composition at the interface plays a very important role in controlling the morphology of deposited carbonate crystals.  相似文献   

11.

The ability of Chromohalobacter marismortui to precipitate carbonate and phosphate minerals has been demonstrated for the first time. Mineral precipitation in both solid and liquid media at different salts concentrations and different magnesium/calcium ratios occurred whereas crystal formation was not observed in the control. The precipitated minerals were studied by X-ray diffraction, scanning electron microscopy and EDX, and were different in liquid and solid media. In liquid media aragonite, struvite, vaterite and monohydrocalcite were precipitated forming crystals and bioliths. Bioliths accreted preferentially close to organic pellicles, whereas struvite preferentially grows in microenvironments free of such pellicles. Magnesian calcite, calcian-magnesian kutnahorite, “proto-dolomite” and huntite were formed in solid media. The Mg content of the magnesian calcite and of Ca-Mg kutnahorite also varied depending on the salt concentration of the culture media. This is the first report on bacterial precipitation of Ca-Mg kutnahorite and huntite in laboratory cultures. The results of this research show the active role played by C. marismortui in mineral precipitation, and allow us to compare them with those obtained previously using other taxonomic groups of moderately halophilic bacteria.  相似文献   

12.
Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses.  相似文献   

13.
【目的】为了探讨细菌对碳酸盐矿物种类和形态的影响。【方法】本文利用丛毛单胞菌HJ-1菌株进行了持续50 d的培养实验。在实验过程中,对细菌数量、沉淀物重量、培养液中Ca2+和Mg2+浓度等进行了动态监测。利用扫描电子显微镜对矿物形态进行了观察,并利用X-射线衍射仪对矿物成分进行测定。【结果】丛毛单胞菌HJ-1菌株具有显著的诱导碳酸盐矿物沉淀的能力,碳酸盐矿物的重量随着培养时间的延长而逐渐增加。X-射线衍射结果表明,形成的碳酸盐沉淀主要由文石和高镁方解石组成,其中文石的最高含量达86%。上述矿物在形态上复杂多样,主要有杆状、柱状、哑铃形、球状和板状以及不规则状和鳞片状集合体。【结论】通常,在Mg/Ca≤2并且有微生物参与的条件下极少形成文石。本文在Mg/Ca为2,不含碳酸根离子的培养基中培养HJ-1菌株的过程中发现了文石。作者认为,低Mg/Ca条件下文石的形成主要与HJ-1菌株分泌较多的胞外多糖有关。  相似文献   

14.
Limestone-marl alternations represent a common type of fine-grained calcareous rhythmites during the entire Phanerozoic. Their diagenetic overprint, however, obliterates their value for palaeoenvironmental interpretations. The original mineralogical composition of the carbonate fraction (aragonite, high-Mg calcite, low-Mg calcite) would potentially yield important information on palaeoenvironmental conditions: for example shallow-water carbonate factories are usually characterised by extensive aragonite production, whereas pelagic carbonate production is dominated by calcitic organisms. Therefore, a reconstruction of the pre-diagenetic mineralogical composition of limestone-marl precursors would be desirable. A particularly conspicuous attribute of fine-grained calcareous rhythmites is the intercalation of two rock types that have undergone two entirely different diagenetic pathways (“differential diagenesis”). As indicated by earlier petrography work, in the interlayers selective aragonite dissolution has taken place, and the dissolved aragonite provided the cement for the limestones. Primary aragonite usually is not preserved in diagenetically mature fine-grained limestones. However, in a recently published paper a method is proposed to quantify the primary mineralogical composition of the precursor sediments of a fine-grained calcareous rhythmite. Here we apply this method to several published data sets from sections of Cambrian to Jurassic age. We try to answer the following questions: Where does the aragonite come from, especially during times of “calcite seas”? What is the impact of the enhanced pelagic carbonate production since the Late Jurassic on the formation of limestone-marl alternations? How much dissolved aragonite is lost to sea water during early marine burial diagenesis, i.e. how closed is the diagenetic system? As demonstrated for the five examples shown here, the new method for reconstructing primary mineralogy potentially provides insight into ancient depositional environments, surface productivity, and ocean chemistry.  相似文献   

15.
Aragonite is an important dimorph of calcium carbonate, industrially and biologically. However, aragonite is so thermodynamically unstable that it is difficult to understand its formation mechanism. A continuous microfluidic system was employed, in which crystallization was induced only by diffusion in a micron-scale channel. Calcium carbonate (CaCO3) formed by liquid-liquid reaction and magnesium ions (Mg2+) were used as additives. To assess the influence of Mg2+ concentration, the Mg2+/Ca2+ molar ratio was set to 1, 3, and 5. Laminar streams flowed in the detection channel with different concentration gradients. The initial crystallization time (tI.C) increased exponentially and the density of crystals decreased as the Mg2+ ion concentration increased. Following transformation of all particles into snowman or sphere shapes, they became spinose sphere-shaped crystals, which was the final form in this study.  相似文献   

16.
The mixture of EDTA-soluble proteins found in abalone nacre are known to cause the nucleation and growth of aragonite on calcite seed crystals in supersaturated solutions of calcium carbonate. Past atomic force microscope studies of the interaction of these proteins with calcite crystals did not observe this transition because no information about the crystal polymorph on the surface was obtained. Here we have used the atomic force microscope to directly observe changes in the atomic lattice on a calcite seed crystal after the introduction of abalone shell proteins. The observed changes are consistent with a transition to (001) aragonite growth on a (1014) calcite surface.  相似文献   

17.
为探讨洞穴微生物沉积碳酸钙作用对洞穴沉积物的影响,利用传统生物学方法,采集贵州中西部地区石将军洞洞穴沉积物表面的微生物样品,结合洞穴监测数据和理化背景资料,利用B-4培养基和B-4C培养基对洞穴细菌进行筛选和纯化,分离出能沉积碳酸钙的菌种,观察和了解洞穴细菌形成的CaCO3晶体,应用X射线衍射分析仪(XRD)分析细菌形成的CaCO3晶体成分,并利用扫描电子显微镜(SEM)观察晶体结构特征。结果表明:1)在B-4培养基下微生物产生的碳酸钙晶体主要为方解石、球霰石和方解石混合物、球霰石,这种变化与培养基pH值的增幅相关;同时,在添加Mg离子的B-4C培养基下形成的碳酸钙晶体主要为方解石,此外,研究中并未检测到文石晶体。2)通过SEM扫描,发现微生物作用形成的碳酸钙晶体存在不规则六方体、柱状体、四方体层状、半球状等,这些晶体形态在化学作用系统下少见,多见于微生物作用形成的方解石。此外,晶体中微生物作用痕迹明显,微生物作用贯穿于整个沉积过程。  相似文献   

18.
The Ordovician was a time of extensive and pervasive low-magnesium calcite (LMC) precipitation on shallow marine sea floors. The evidence comes from field study (extensive hardgrounds and other early cementation fabrics in shallow-water carbonate sequences) and petrography (large volumes of marine calcite cement in grainstones). Contemporaneous sea-floor events, particularly relationships with boring and encrusting organisms and reworking in sequences of intraformational conglomerates, confirm the early timing of such LMC cementation, and also of widespread associated aragonite dissolution. Local evidence points to the dissolved aragonite as a significant source of the calcite cement. This scenario, and the fabrics that provide the evidence for it, are likely to be pointers to other times in the stratigraphic record when LMC was the predominant shallow marine precipitate (Calcite Sea times). The combination of rapid calcite precipitation and aragonite dissolution at a time early in the Phanerozoic when many major invertebrate groups were becoming established may have acted as an influence on the evolution of both their skeletal mineralogy and their ecology.  相似文献   

19.
Tobacco (Nicotiana tabacum L. cv Xanthi) plants were exposed to toxic levels of zinc (Zn). Zn exposure resulted in toxicity signs in plants, and these damages were partly reduced by a calcium (Ca) supplement. Confocal imaging of intracellular Zn using Zinquin showed that Zn was preferentially accumulated in trichomes. Exposure to Zn and Zn + Ca increased the trichome density and induced the production of Ca/Zn mineral grains on the head cells of trichomes. These grains were aggregates of submicrometer-sized crystals and poorly crystalline material and contained Ca as major element, along with subordinate amounts of Zn, manganese, potassium, chlorine, phosphorus, silicon, and magnesium. Micro x-ray diffraction revealed that the large majority of the grains were composed essentially of metal-substituted calcite (CaCO3). CaCO3 polymorphs (aragonite and vaterite) and CaC2O4 (Ca oxalate) mono- and dihydrate also were identified, either as an admixture to calcite or in separate grains. Some grains did not diffract, although they contained Ca, suggesting the presence of amorphous form of Ca. The presence of Zn-substituted calcite was confirmed by Zn K-edge micro-extended x-ray absorption fine structure spectroscopy. Zn bound to organic compounds and Zn-containing silica and phosphate were also identified by this technique. The proportion of Zn-substituted calcite relative to the other species increased with Ca exposure. The production of Zn-containing biogenic calcite and other Zn compounds through the trichomes is a novel mechanism involved in Zn detoxification. This study illustrates the potential of laterally resolved x-ray synchrotron radiation techniques to study biomineralization and metal homeostasis processes in plants.  相似文献   

20.
贝壳是一种具有优异力学性能的生物硬组织,贝壳基质蛋白质对贝壳的形成具有重要意义。厚壳贻贝(Mytilus coruscus)贝壳中发现一种类似胶原蛋白质的新型贝壳基质蛋白质,命名为collagen-like protein 2(CLP-2)。然而,该蛋白质的结构与功能以及对贝壳形成的影响机制尚不清楚。为此,本研究对CLP 2开展了序列分析;进一步采取密码子优化结合原核重组表达策略,开展了CLP-2的重组表达;在此基础上分析了重组CLP-2对酸钙结晶的诱导、结晶速率抑制以及碳酸钙结合能力。对CLP-2的序列分析结果表明,该蛋白质序列中含有信号肽及两个Von Willebrand factor A(VWA)结构域。CLP-2在数据库中尚无高同源性蛋白质存在,表明这是一种较为新颖的贝壳基质蛋白。所获得的重组CLP-2对碳酸钙体外结晶表现出明显的诱导作用,扫描电镜以及傅里叶红外光谱结果表明,重组CLP-2可诱导碳酸钙晶体的形貌由立方体形转化为球形,并在高浓度下进一步转化为哑铃形;同时,重组CLP-2可促使碳酸钙晶体的晶型由方解石型向文石型转化;重组CLP-2在体外具有碳酸钙晶体结合作用;此外,重组CLP-2能显著抑制碳酸钙晶体的结晶速度(P<0.01),并具有浓度依赖性。上述结果表明,厚壳贻贝贝壳CLP-2蛋白质在贝壳,特别是文石型肌棱柱层的生物矿化过程中具有重要作用。上述研究为深入了解贻贝贝壳的形成机制,以及胶原类蛋白质对生物矿化过程的影响奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号