首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dark CO2 fixation by Anabaena cylindrica was stimulated aboutthree-fold by the addition of NH4Cl to the cells. The 14CO2incorporation experiments showed that 14C is most rapidly incorporatedinto aspartate and then glutamine by adding NH4CI. Glutamineaccumulated predominantly after the addition of NH4Cl showingthat NH4 is incorporated into glutamine by glutamine synthetase.The stimulating effect of NH4Cl on CO2 fixation and amino acidsynthesis was suppressed by methionine sulfoximine, an inhibitorof glutamine synthetase. It was suggested that dark CO2 fixationwas stimulated by the action of glutamine synthesis which isenhanced by ammonia. (Received February 10, 1981; Accepted April 2, 1981)  相似文献   

2.
A novel photorespiratory mutant of Arabidopsis thaliana, designatedgld2, was isolated based on a growth requirement for abnormallyhigh levels of atmospheric CO2. Photosynthetic CO2 fixationwas inhibited in the mutant following illumination in air butnot in atmosphere containing 2% O2. Photosynthetic assimilationof 14CO2 in an atmosphere containing 50% O2 resulted in accumulationof 48% of the soluble label in glycine in the mutant comparedto 9% in the wild type. The rate of glycine decarboxylationby isolated mitochondria from the mutant was reduced to 6% ofthe wild type rate. In genetic crosses, the mutant complementedtwo previously described photorespiratory mutants of A. thalianathat accumulate glycine during photosynthesis in air due todefects in glycine decarboxylase (glyD, now designated gld1)and serine transhydroxymethylase (stm). Because glycine decarboxylaseis a complex of four enzymes, these results are consistent witha mutation in a glycine decarboxylase subunit other than thataffected in the gld1 mutant. The two gld loci were mapped tochromosomes 2 and 5, respectively. 3Present address: Department of Crop and Soil Sciences, MichiganState University, East Lansing, MI 48824, U.S.A. 4Present address: Department of Applied Bioscience, Facultyof Agriculture, Hokkaido University, Kita-Ku, Sapporo, 060 Japan 5Present address: Department of Biology, Carnegie Institutionof Washington, 290 Panama Street, Standford, CA 94305, U.S.A.  相似文献   

3.
The effects of NH4Cl on respiration, adenylate and free aminoacid levels as well as dark CO2 fixation were investigated usingnitrogen-starved Chlorella vulgaris 11h cells with or withoutaddition of methionine sulfoximine (MSX), an inhibitor of glutaminesynthetase. Upon addition of NH4Cl (1 mM) to the cells not treatedwith MSX, respiration was stimulated and the level of ATP droppedrapidly, while the levels of ADP and AMP increased. NH4Cl alsostimulated amino acid synthesis, especially of glutamine, andmarkedly enhanced dark CO2 fixation. Addition of NH4Cl to MSX-treatedcells stimulated respiration and lowered the level of ATP, butdid not enhance glutamine synthesis and only slightly stimulateddark CO2 fixation. 4On leave from Institute of Medical Science, Advance R &D Co. Minami-Hashimoto, Sagamihara, Kanagawa-ken 220, Japan (Received January 28, 1984; Accepted April 19, 1984)  相似文献   

4.
The rate of net CO2 fixation in Lemna gibba L. was decreasedto 50% by 100–150 min incubation in the presence of 0•5mol m–3 L-methionine-D,L-Sulphoximine (MSO), an irreversibleinhibitor of glutasnine synthetase (GS). The pattern of inhibitionwas similar in both 21% O2 and 2% O2. The inhibition was accompaniedby increased intracellular levels. Incubation with 10 mol m–3 under the same conditions, but without MSO, resulted in even higher levels but the rate of CO2 fixation was unaffected. Additions of glutamine, glutamate, glycine or serine delayedthe MSO-induced inhibition of CO2 fixation. The same amino acidsdelayed the inactivation of GS by MSO. Thus inhibition of CO2 fixation by MSO in Lemna is neither causedby elevated levels nor closely related to photorespiration. Possibly, MSO causes shortage of amino-N formaintenance of the functional integrity of the photosyntheticapparatus. Key words: Methionine sulphoximine, CO2, fixation, Lemna  相似文献   

5.
The pattern for primary products of CO2-fixation and the chloroplaststructure of Amaranthus retrqflexus L., a species which incorporatescarbon dioxide into C4 dicarboxylic acids as the primary productof photosynthesis, were compared in various chlorophyll containingtissues,i.e., foliage leaves, stems, cotyledons and pale-greencallus induced from stem pith. Despite some morphological differencesin these assimilatory tissues, malate and aspartate were identifiedas the major compounds labelled during a 10 sec fixation of14CO2 in all tissues. Whereas, aspartate was the major componentin C4-dicarboxylic acids formed in foliage leaves, malate predominatedas the primary product in stems, cotyledons and the pale-greencallus. The percentage of 14C-radioactivity incorporated intoPGA and sugar-P esters increased and 14C-sucrose was detectedin the prolonged fixation of 14CO2 in the light, not only infoliage leaves, but also in stems and cotyledons. 1 This work was supported by a Grant for Scientific ResearchNo. 58813, from the Ministry of Education, Japan. 2 Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo, Japan. 3 Present address: Department of Biochemistry, University ofGeorgia, Athens 30601. Georgia, U. S. A. (Received July 10, 1971; )  相似文献   

6.
Larsson, M., Larsson, C.-M. and Guerrero, M. G. 1985. Photosyntheticnitrogen metabolism in high and low CO2-adapted Scenedesmus.I. Inorganic carbon-dependent O2 evolution, nitrate utilizationand nitrogen recycling.—J. exp Bot. 36: 1373–1386 Scenedesmus obtusiusculus Chod. was grown on an inorganic mediumflushed with either air or air supplemented with 3% CO2. Inair-grown cells, O2 evolution dependent on low, but not high,HCO3 concentrations was strongly inhibited by the carbonicanhydrase inhibitor acetazolamide. Cells grown with 3% CO2 exhibitedlow rates of O2 evolution at low external inorganic C; however,after 30 min in air O2 evolution rates at low inorganic C approachedthose of air-grown cells. These results are compatible withthe view that Scenedesmus develops a ‘CO2 concentratingmechanism’ in air, with carbonic anhydrase as an importantconstituent When 3% CO2-grown cells were subjected to air-level of CO2,just a transient decline in NO3 utilization was observed,but in the presence of acetazolamide the rate of the processdecreased drastically in response to the decrease in the CO2level. In CO2-free air NO3 was taken up at high ratesbut in a deregulated manner, leading to release of NH4+. A portionof the NO3 taken up in the absence of CO2 was apparentlyassimilated Cellular nitrate reductase (NR) activity initially decreasedbut subsequently recovered after a transition from 3% CO2 toair. In the presence of acetazolamide, a persistent decreasein NR activity was observed. Cellular glutamine synthetase (GS)activity increased after transition from 3% CO2 to air, theactivity increase being unaffected by acetazolamide. NH4+ releaseto the medium in the presence of L-methionine-D, L-sulphoximine(MSO) transiently increased in 3% CO2-grown cells in responseto a transfer to air. MSO-induced NH4+ release was in fact higherin air-grown cells than in 3% CO2-grown cells. Glycollate wasinitially released after transition from 3% CO2 to air, butthere was no difference in glycollate release between MSO-treatedand untreated cells. In air-adapted Scenedesmus, N recyclingseems to be of minor importance in comparison to primary N assimilation Key words: CO2-fixation, N recycling, nitrate uptake, Scenedesmus  相似文献   

7.
Tracer amounts of atmospheric [13N]-Iabelled ammonia gas, wereabsorbed by leaves of Lupinus albus and Helianthus annuus inboth the light and the dark. Exogenous [13N]-ammonia was onlyabsorbed in the dark when the feeding occurred shortly aftera period of illumination and the tissue was not depleted ofits carbohydrate reserves (e.g. starch). Incorporation of the[13N]-ammonia appeared to occur via the leaf glutamine synthetase/glutamatesynthase (GS/GOGAT) cycle since 2.0 mol m–3 MSX, an inhibitorof the GS reduced uptake in both the light and dark. Photosyntheticincorporation of 11CO2 was not affected by this treatment Therate of movement of [13N]-assimilates in the petiole of attachedleaves of Helianthus and Lupinus was similar to that of the11Cl-photo assimilates. Export of both [13N] and [11C]-Iabelledassimilates from the leaf and movement in the petiole in boththe light and the dark was inhibited by source leaf anoxia (i.e.nitrogen gas). Translocation was re-established at the samerate when the feed leaf was exposed to gas containing more than2% O2 which permitted dark respiration to proceed. After aninitial feeding of either 11CO2 or [13N]-ammonia at ambient(21%) O2 exposure of the source leaf to 2% O2, or 50% O2 didnot alter the rates of translocation, indicating that changesin photosynthetic activity in the source leaf due to photorespiratoryactivity need not markedly alter, at least during the shortperiod, the loading and translocation of either [11C ] or [13N]-labelledleaf products. Key words: Translocation, CO2, NH3, Leaves, Helianthus annuus, Lupinus albus  相似文献   

8.
Distribution of iron-containing oxidases in aging nodal rootsof rice and wheat was studied. Activities of cytochrome c oxidase(1.9.3.1 [EC] , cytochrome c : O2 oxidoreductase), catalase (1.11.1.6 [EC] ,H2O2: H2O2 oxidoreductase) and peroxidase (1.11.1.7 [EC] , donor:H2O2 oxidoreductase) in wheat roots were comparatively higherthan were those in rice roots at corresponding stages. Cytochromec oxidase in roots remained active throughout the lives of therice and wheat crops. In rice roots, catalase seemed to playa distinct role around the panicle formation stage. Decay ofcatalase activity took place earlier than did that of peroxidaseand cytochrome c oxidase activities. In wheat roots similarenzyme activity changes were not observed. Data may suggestthat the high activity of iron containing oxidases at the panicleformation stage (I) may be chiefly due to catalase activityin rice roots. 1Paper presented at the 14th Annual Meeting of the Society ofthe Science of Soil and Manure, Japan (1968). (Received November 21, 1968; )  相似文献   

9.
The effect of carbonic anhydrase (CA) on time courses of photosynthetic14C incorporation in the presence of 14CO2 or NaH14CO3 was studiedwith cells of Chlamydomonas reinhardtii which had been grownunder ordinary air (low-CO2 cells) or air enriched with 4% CO2(high-CO2 cells). Experimental data obtained at 20°C andpH 8.0 suggested that the major form of inorganic carbon utilizedby high-CO2 cells was CO2, while that utilized by low-CO2 cellswas HCO3. The cell suspension showed CA activity which was comparableto that observed in the sonicate of cells. Both activities werehigher in low-CO2 cells than in high-CO2 cells. The mechanism by which HCO3 is utilized by low-CO2 cellsof C. reinhardtii is discussed. 3Present address: Department of Biology, Faculty of Science,University of Niigata, Niigata 950-21, Japan. (Received August 4, 1982; Accepted January 19, 1983)  相似文献   

10.
Glutamate dehydrogenase (GDH) (EC 1.4.1.3 [EC] .) purified from greentobacco callus mitochondria was activated markedly by Ca2$ inthe amination reaction. This activation was detectable evenat concentrations below 5 µM Ca2$. Saturation curves for the three substrates of the aminationreaction showed normal Michaelis-Menten kinetics in the presenceof 1 mM of Ca2$, but pronounced substrate inhibition occurredwithout Ca2$. The effect of Ca2$ was chiefly on the maximalvelocity. The saturation curve for NH4Cl in the presence of Ca2$ was modulatedby a change in pH. The apparent Km value for NH4Cl markedlydecreased whereas that for -ketoglutarate increased slightlywhen the pH was raised from 7.3 to 9.0. In contrast, the Kmfor NADH was little affected by raising the pH. The characteristicof GDH which increases its affinity for NH4Cl when the pH israised may be compatible with the detoxification of ammonia. 1 Present address: Mochida Pharmaceutical Co., Ltd. (Received August 24, 1981; Accepted November 28, 1981)  相似文献   

11.
The reductive carboxylic acid cycle appears to be the majorcarbon assimilation pathway in green sulfur bacteria, Chlorobiumthiosulfatophilum. While cyanide was relatively ineffectivein inhibiting the bacterial photosynthetic CO2 fixation, photosynthesiswas strongly impaired in an O2-containing atmospheric environment.No glycolate formation was detected in Chlorobium under an O2atmosphere. In the purple sulfur bacteria, Chromatium vinosum,however, photosynthesis was highly sensitive to cyanide, andin a short-term incubation (up to 10 min) photosynthetic CO2fixation was found to be relatively indifferent to an O2-containingatmosphere of up to 100% O2. Significant formation of glycolatewas demonstrated upon a very brief exposure to O2, whereas thetotal photosynthetic CO2 fixation was slightly affected. However,ribulose-1,5-bisphosphate carboxylase activity in Chromatiumextract was competitively inhibited by O2 in a similar mannerto the higher plant enzyme, K1(O2) value being 0.7 mM at pH8.2. The percentage of incorporation of 14CO2 into glycolateand glycine under an O2-containing atmosphere declined withincreasing levels of bicarbonate concentrations in the medium.The Warburg effect and biosynthetic mechanisms involving glycolatein photosynthetic bacteria are discussed. 1 This is paper XXXIX in the series "Structure and Functionof Chloroplast Proteins". Paper XXXVIII is reference (6) Asamiand Akazawa (1977). This research was supported in part by grantsfrom the Ministry of Education of Japan (111912), the TorayScience Foundation (Tokyo), and the Japan Securities ScholarshipFoundation (Tokyo). (Received January 28, 1977; )  相似文献   

12.
When Chlorella vulgaris 11h, Chlorella vulgaris C-l, Chlamydomonasreinhardtii, Chlamydomonas moewusii, Scenedesmus obliquus, orDunaliella tertiolecta were illuminated in with 0.5 mM NaHCO3,the pH of the medium increased in a few minutes from 6 to about9 or 10. The alkalization, which was accompanied by O2 evolution,was dependent on light, external dissolved inorganic carbon(DIC) as HCO-3, and algae grown or adapted to a low, air-levelCO2 in order to develop a DIC concentrating mechanism. Therewas little pH increase by algae without a DIC concentratingprocess from growth on 3% CO2 in air. Photosynthetic O2 evolutionwithout alkalization occurred using either internal DIC or externalCO2 at acidic pH. The PH increase stopped between pH 9 to 10,but the alkalization would restart upon re-acidification betweenpH 6 and 8. Alkalization was suppressed by the carbonic anhydraseinhibitors, acetazolamide, ethoxyzolamide or carbon oxysulfide.The pH increase appeared to be the consequence of the externalconversion of HCO3 into CO2 plus OH during photosynthesisby cells with a high affinity for CO2 uptake. Cells grown onhigh CO2 to suppress the DIC pump, when given low levels ofHCO3 in the light, acidified the medium from pH 10 to7. Air adapted Scenedesmus cells with a HCO3 pump, aswell as a CO2 pump, alkalized the medium very rapidly in thelight to a pH of over 10, as well as slower in the dark or inthe light with DCMU or without external DIC and O2 evolution.Alkalization of the medium during photosynthetic DIC uptakeby algae has been considered to be part of the global carboncycle for converting H2CO3 to HCO3 and for the formationof carbonate salts by calcareous algae from the alkaline conversionof bicarbonate to carbonate. These processes seem to be a consequenceof the algal CO2 concentrating process. 1Present address: Department of Biology, Faculty of Science,Niigata University, Niigata, 950-21 Japan.  相似文献   

13.
Photorespiration rates under air-equilibrated conditions (0.04%CO2 and 21% O2) were measured in Chlamydomonas reinhardtii wild-type2137, a phosphoglycolate-phosphatase-deficient (pgp1) mutantand a suppressor double mutant (7FR2N) derived from the pgp1mutant. In both cells grown under 5% CO2 and adapted air for24 h in the suppressor double mutant, the maximal rate of photorespiration(phosphoglycolate synthesis) was only about half of that ineither the wild type or the pgp1 mutant (18-7F) cells. In theprogeny, the reduced rate of photorespiration was accompaniedby increased photosynthetic affinity for inorganic carbon andthe capacity for growth under air whether accompanied by thepgp1 background or not. Tetrad analyses suggested that thesethree characteristics all resulted from a nuclear single-genemutation at a site unlinked to the pgp1 mutation. The decreasein photorespiration was, however, not due to an increase inthe CO2/O2 relative specificity of ribulose-1,5-bisphosphatecarboxylase/oxygenase of 7FR2N or of any other suppressor doublemutants tested. The relationship between the decrease in therate of photorespiration and the CO2-concentrating mechanismis discussed. 3 Current address: Institute of Botany, Academy of Sciences,Patamdar Shosse, 40, Baku, 370073, Azerbaijan. 4 Current address: Department of Management and InformationScience, Jobu University, 270-1, Shinmachi, Tano, Gunma, 370-1393Japan.  相似文献   

14.
Tobin, A. K., Sumar, N., Patel, M., Moore, A. L. and Stewart,G. R. 1988. Development of photorespiration during chloroplastbiogenesis in wheat leaves.—J. exp. Bot. 39: 833–843. The rate of light-dependent ammonia accumulation in L-methioninesulphoximine (MSO: glutamine synthetase inhibitor)-treated wheat(Triticum aestivum L. cv. Maris Huntsman) primary leaf sectionsincreased with mesophyll cell maturity. Ammonia production inthe more mature sections (beyond 2.0 cm from the basal meristem)was inhibited by elevated CO2 concentrations and by incubationwith 10 mol m–3 pyrid-2-yl hydroxymethane sulphonate (HPMS).In contrast, the low levels of ammonia which accumulated inthe immature sections (0 to 2.0 cm from the base) were unaffectedby such treatments. This indicates that the ammonia producedin mature wheat leaf sections is of photorespiratory originand that the capacity of this pathway increases with mesophyllcell and chloroplast development. Rates of CO2-dependent oxygenevolution by leaf sections (under saturating CO2) increasedin parallel with ammonia production. Levels of endogenous nitratewere relatively high and increased from 5.15 mol x 10–13mesophyll cell–1 in meristematic cells to 6.6 mol x 10–12mesophyll cell–1 in mature tissue. There was no significantchange in leaf nitrate level during 30 min light incubationof the wheat leaf sections, indicating that the majority ofthe nitrate was metabolically inactive and stored in the vacuole.Activities of key enzymes of photorespiration (glutamine synthetase,glycollate oxidase), nitrogen metabolism (nitrate reductase,glutamate dehydrogenase, glutamine synthetase) and mitochondrialrespiration (cytochrome oxidase), showed specific and distinctpatterns of development during leaf growth. Chloroplast glutaminesynthetase (GS2) and peroxisomal glycollate oxidase developedin apparent synchrony with the major increase in activity occurringin regions beyond4.0 cm from the leaf base, i.e. where photorespirationwas developing. Cytosolic glutamine synthetase (GS1) and nitratereductase (in vivo) activities were identical throughout leafgrowth, reaching maximum rates at 4.0 cm from the base and thenremaining constant. Activities of the mitochondrial enzymesglutamate dehydrogenase (GDH) and cytochrome oxidase were highin meristematic cells and increased in parallel, attaining amaximum towards the leaf tip. This indicated a respiratory,as opposed to a photorespiratory, role for GDH in wheat leafmetabolism. The evidence for controlled, co-ordinated synthesisof pathway enzymes at specific stages of organelle biogenesisis discussed. Key words: Photorespiration, organelle biogenesis  相似文献   

15.
Stands of spring wheat grown in open-top chambers (OTCs) wereused to assess the individual and interactive effects of season-longexposure to elevated atmospheric carbon dioxide (CO2 and ozone(O3) on the photosynthetic and gas exchange properties of leavesof differing age and position within the canopy. The observedeffects were related to estimated ozone fluxes to individualleaves. Foliar chlorophyll content was unaffected by elevatedCO2 but photosynthesis under saturating irradiances was increasedby up to 100% at 680 µmol mol–1 CO2 relative tothe ambient CO2 control; instantaneous water use efficiencywas improved by a combination of increased photosynthesis andreduced transpiration. Exposure to a seasonal mean O3 concentration(7 h d–1) of 84 nmol mol–1 under ambient CO2 acceleratedleaf senescence following full expansion, at which time chlorophyllcontent was unaffected. Stomatal regulation of pollutant uptakewas limited since estimated O3 fluxes to individual leaves werenot reduced by elevated atmospheric CO2, A common feature ofO3-treated leaves under ambient CO2 was an initial stimulationof photosynthesis and stomatal conductance for up to 4 d and10 d, respectively, after full leaf expansion, but thereafterboth variables declined rapidly. The O3-induced decline in chlorophyllcontent was less rapid under elevated CO2 and photosynthesiswas increased relative to the ambient CO2 treatment. A/Ci analysessuggested that an increase in the amount of in vivo active RuBisCOmay be involved in mitigating O3-induced damage to leaves. Theresults obtained suggest that elevated atmospheric CO2 has animportant role in restricting the damaging effects of O3 onphotosynthetic activity during the vegetative growth of springwheat, and that additional direct effects on reproductive developmentwere responsible for the substantial reductions in grain yieldobtained at final harvest, against which elevated CO2 providedlittle or no protection. Key words: Elevated CO2 and O3, gas exchange, O3 flux, stomata, chlorophyll, Triticum aestivum  相似文献   

16.
Barley (Hordeum vulgare L. cv. Golf) plants were grown at twodifferent relative addition rates; 0.1 and 0.2 d–1 ofnitrate. Three to five days before measurements started theplants were transferred to a nutrient solution with 2 mM nitrateor ammonium. The ammonium-grown plants showed increased ammoniumlevels in both shoots and roots and also increased ammoniumconcentrations in xylem sap. Ammonia emission measured in cuvettes connected to an automaticNH3 monitor was close to zero for nitrate-grown plants but increasedto 0.59 and 0.88 nmol NH3 m–2 S–1 for plants transferredto ammonium after growing at RA=0.2 and 0.1 d–1, respectively.In darkness, NH3 emission decreased together with photosynthesisand transpiration, but increased rapidly when the light wasturned on again. Addition of 0.5 mM methionine sulphoximine (MSO) to the plantscaused an almost complete inhibition of both root and shootglutamine synthetase (GS) activity after 24 h. Ammonia emissionincreased dramatically and photosynthesis and transpirationdecreased in both nitrate- and ammonium-grown plants as a resultof the GS inhibition. At the same time plant tissue and xylemsap ammonium concentrations increased, indicating the importanceof GS in controlling plant ammonium levels and thereby NH3 emissionfrom the leaves. Key words: Hordeum vulgare, ammonia emission, ammonium, glutamine synthetase, nitrogen nutrition, photosynthesis, transpiration  相似文献   

17.
To study the wavelength-effect on photosynthetic carbon metabolism,14C-bicarbon-ate was added to Chlorella vulgaris 1 lh suspensionunder monochromatic blue (456 nm) and red (660 nm) light. Thelight intensities were so adjusted that the rates of 14CO2 fixationunder blue and red light were practically equal. Analysis of14C-fixation products revealed that the rates of 14CO2 incorporationinto sucrose and starch were greater under red light than underblue light, while blue light specifically enhanced 14CO2 incorporationinto alanine, aspartate, glutamate, glutamine, malate, citrate,lipid fraction and alcohol-water insoluble non-carbohydratefraction. Pretreatment of the algal cells in phosphate mediumin the dark, which was essential for the blue light enhancementof PEP carboxylase activity, was not necessary to induce theabove wavelength effects. Superimposition of monochromatic bluelight at low intensity (450 erg.cm–2.sec–1) on thered light at saturating intensity caused a significant decreasein the rate of 14CO2 incorporation into sucrose and increasein incorporation into alanine, lipid-fraction, aspartate andother related compounds, indicating that the path of carbonin photosynthesis is regulated by short wavelengdi light ofvery low intensity. Possible effects of wavelength regulationof photosynthetic carbon metabolism in algal cells are discussed. 1 Part of this investigation was reported at the XII InternationalBotanical Congress, Leningrad, 1975 and the Japan-US CooperativeScience Seminar "Biological Solar Energy Conversion", Miami,1976. Requests for reprints should be addressed to S. Miyachi,Radioisotope Centre, University of Tokyo, Bunkyo-ku, Tokyo 113,Japan. 4 Present address: Department of Chemistry, Faculty of PharmaceuticalSciences, Teikyo Univ., Sagamiko, Kanagawa, Japan. (Received August 6, 1977; )  相似文献   

18.
Changes in photosystem stoichiometry in response to shift ofenvironments for cell growth other than light regime were studiedwith the cyanophyte Synechocystis PCC 6714 in relation to thechange induced by light-quality shift. Following two environment-shiftswere examined: the shift of molecular form of inorganic carbonsource for photosynthesis from CO2 to HCO3 (CO2 stress)and the increase in salinity of the medium with NaCl (0.5 M)(Na+ stress). Both CO2 and Na+ stresses induced the increasein PSI abundance resulting in a higher PSI/PSII stoichiometry.CO2 stress was found to elevate simultaneously Cyt c oxidaseactivity (Vmax). The feature was the same as that caused bylight-quality shift from preferential excitation of PSI to PSII(light stress) though the enhancement by either stress was smallerthan that by light stress. Under our experimental conditions,PSI/PSII stoichiometry appeared to increase at a fairly constantrate to the basal level even when the basal level had been differentlydetermined by the light-quality. Enhancing rates for PSI/PSIIstoichiometry and for Cyt c oxidase activity were also similarto each other. Since the two stresses affect the thylakoid electrontransport similarly to the shift of light-quality, we interpretedour results as follows: three environmental stresses, CO2, Na+,and light stresses, cause changes in electron turnover capacityof PSI and Cyt c oxidase under a similar, probably a common,mechanism for monitoring redox state of thylakoid electron transportsystem. 1On leave from Department of Biology, College of Natural Science,Kyngpook National University, Taegu 702-701, Korea. 2Present address: Department of Marine Bioscience, Fukui Pre-fecturalUniversity, Obama, Fukui, 917 Japan.  相似文献   

19.
The effects of abscisic acid (ABA) on photosynthesis in leavesof Helianthus annuus L. were compared with those in leaves ofVicia faba L. After the ABA treatment, the response of photosyntheticCO2 assimilation rate, A, to calculated intercellular partialpressure of CO2, Pi, (A(pi) relationship) was markedly depressedin H. annuus. A less marked depression was also observed inV.faba. However, when the abaxial epidermes were removed fromthese leaves, neither the maximum rate nor the CO2 responseof photosynthetic oxygen evolution was affected by the applicationof ABA. Starch-iodine tests revealed that photosynthesis was not uniformover the leaves of H. annuus treated with ABA. The starch contentwas diffferent in each bundle sheath extension compartment (thesmallest subdivision of mesophyll by veins with bundle sheathextensions, having an area of ca. 0.25 mm2 and ca. 50 stomata).In some compartments, no starch was detected. The distributionof open stomata, examined using the silicone rubber impressiontechniques, was similar to the pattern of starch accumulation.In V.faba leaves, which lack bundle sheath extensions, distributionof starch was more homogeneous. These results indicate that the apparent non-stomatal inhibitionof photosynthesis by ABA deduced from the depression of A(pi)relationship is an artifact which can be attributed to the non-uniformdistribution of transpiration and photosynthesis over the leaf.Intercellular gaseous environment in the ABA-treated leavesis discussed in relation to mesophyll anatomy. 1 Present address: Department of Botany, Duke University, Durham,NC 27706, U.S.A. (Received September 30, 1987; Accepted January 13, 1988)  相似文献   

20.
Segments of wheat leaves were supplied in the light with 14C-labelledserine or glucose in atmospheres containing different concentrationsof O2 and zero or 350 parts/106 CO2. Some O2 was necessary forsucrose synthesis from either serine or glucose but sucrosesynthesis from glucose depended on reactions with a high affinityfor O2 whereas sucrose synthesis from serine depended both onreactions with high and low affinities for O2. In the presenceof CO2 sucrose synthesis from serine was decreased when theO2 concentration was increased from 20 to 80% by volume andCO2 was liberated; sucrose synthesis from glucose was almostunaffected by the same change in conditions. Also, in an atmospherecontaining 80% O2 and 350 parts/106 CO2, radioactivity from[14C]serine, was incorporated into glycine. This was not truefor glucose feeding. Hence glucose provides a substrate forsucrose synthesis but not for photorespiration whereas serineis used for both processes in the presence of CO2; in the absenceof CO2 glucose provides substrate for both sucrose synthesisand photorespiration and serine metabolism to sucrose is restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号