首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The murine tooth development is governed by sequential and reciprocal epithelial-mesenchymal interactions. Multiple signaling molecules are expressed in the developing tooth germ and interact each other to mediate the inductive tissue interactions. Among them are Sonic hedgehog (SHH), Bone Morphogenetic Protein-2 (BMP2) and Bone Morphogenetic Protein-4 (BMP4). We have investigated the interactions between these signaling molecules during early tooth development. We found that the expression of Shh and Bmp2 is downregulated at E12.5 and E13.5 in the dental epithelium of the Msx1 mutant tooth germ where Bmp4 expression is significantly reduced in the dental mesenchyme. Inhibition of BMP4 activity by noggin resulted in repression of Shh and Bmp2 in wild-type dental epithelium. When implanted into the dental mesenchyme of Msx1 mutants, beads soaked with BMP4 protein were able to restore the expression of both Shh and Bmp2 in the Msx1 mutant epithelium. These results demonstrated that mesenchymal BMP4 represents one component of the signal acting on the epithelium to maintain Shh and Bmp2 expression. In contrast, BMP4-soaked beads repressed Shh and Bmp2 expression in the wild-type dental epithelium. TUNEL assay indicated that this suppression of gene expression by exogenous BMP4 was not the result of an increase in programmed cell death in the tooth germ. Ectopic expression of human Bmp4 to the dental mesenchyme driven by the mouse Msx1 promoter restored Shh expression in the Msx1 mutant dental epithelium but repressed Shh in the wild-type tooth germ in vivo. We further demonstrated that this regulation of Shh expression by BMP4 is conserved in the mouse developing limb bud. In addition, Shh expression was unaffected in the developing limb buds of the transgenic mice in which a constitutively active Bmpr-IB is ectopically expressed in the forelimb posterior mesenchyme and throughout the hindlimb mesenchyme, suggesting that the repression of Shh expression by BMP4 may not be mediated by BMP receptor-IB. These results provide evidence for a new function of BMP4. BMP4 can act upstream to Shh by regulating Shh expression in mouse developing tooth germ and limb bud. Taken together, our data provide insight into a new regulatory mechanism for Shh expression, and suggest that this BMP4-mediated pathway in Shh regulation may have a general implication in vertebrate organogenesis.  相似文献   

2.
The Shh signalling pathway in early tooth development.   总被引:7,自引:0,他引:7  
The Sonic Hedgehog (Shh) signalling pathway has been proposed to play an important role in mammalian tooth development. We describe the spatial and temporal expression of genes in this pathway during early tooth development and interpret these patterns in terms of the likely roles of Shh signalling. We show that the two putative receptors of the Shh ligand, Ptc and Ptch-2, localise in different cells, suggesting Shh may function in different ways as an epithelial and mesenchymal signal. Shh signalling has previously been shown, in other organs, to stimulate cell proliferation. In this paper we analyse the Fgf signalling pathway in Gli-2 mutants and propose a mechanism as to how Gli-2 may regulate cell proliferation in tooth development.  相似文献   

3.
Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells.  相似文献   

4.
Sonic hedgehog (Shh), a vertebrate homologue of the Drosophila segment-polarity gene hedgehog, has been reported to play an important role during normal development of various tissues. Abnormal activities of Shh signaling pathway have been implicated in tumorigenesis such as basal cell carcinomas and medulloblastomas. Here we show that Shh signaling negatively regulates prostatic epithelial ductal morphogenesis. In organotypic cultures of developing rat prostates, Shh inhibited cell proliferation and promoted differentiation of luminal epithelial cells. The expression pattern of Shh and its receptors suggests a paracrine mechanism of action. The Shh receptors Ptc1 (Patched1) and Ptc2 were found to be expressed in prostatic stromal cells adjacent to the epithelium, where Shh itself was produced. This paracrine model was confirmed by co-culturing the developing prostate in the presence of stromal cells transfected with a vector expressing a constitutively active form of Smoothened, the real effector of the Shh signaling pathway. Furthermore, expression of activin A and TGF-beta1 that were shown previously to inhibit prostatic epithelial branching was up-regulated following Shh treatment in the organotypic cultures. Taken together, these results suggest that Shh negatively regulates prostatic ductal branching indirectly by acting on the surrounding stromal cells, at least partly via up-regulating expression of activin A and TGF-beta1.  相似文献   

5.
Sonic hedgehog expression during early tooth development in Suncus murinus   总被引:1,自引:0,他引:1  
Tooth development is a highly organized process characterized by reciprocal interactions between epithelium and mesenchyme. However, the expression patterns and functions of molecules involved in mouse tooth development are unclear from the viewpoint of explaining human dental malformations and anomalies. Here, we show the expression of sonic hedgehog (Shh), a potent initiator of morphogenesis, during the early stages of tooth development in Suncus murinus. Initially, symmetrical, elongated expression of suncus Shh (sShh) was observed in the thin layer of dental epithelial cells along the mesial-distal axis of both jaws. As the dental epithelium continued to develop, sShh was strictly restricted to the predicted leading parts of the growing, invaginating epithelium corresponding to tooth primordia and enamel knots. We propose that some aspects of Shh function in tooth development are widely conserved in mammalian phylogeny.  相似文献   

6.
The epithelial–mesenchymal transition (EMT) is an important event in the developmental process of various organs. In periodontal development during root formation of a tooth, this EMT has been a subject of controversy. Hertwig’s epithelial root sheath (HERS), consisting of two epithelial layers, plays a role of inducing odontogenesis during root development and thereafter becomes fragmented. Some researchers have maintained that in the process of this fragmentation, some HERS cells change from epithelial to mesenchymal cells. Here, we established a HERS cell line (HERS01a) and examined its gene and protein expression. Immunohistochemical staining and real-time PCR analysis showed that HERS01a cells expressed vimentin and N-cadherin as mesenchymal markers as well as cytokeratin14, E-cadherin, and p63 as epithelial stem cell markers. In the presence of TGF-β, HERS01a cells also expressed many more mesenchymal markers, as well as snail1 and 2 as EMT markers. Taken together, our data show that HERS01a displayed unique features associated with EMT in the root formation process, and will thus be useful for analyzing the biological characteristics of HERS and the molecular mechanism underlying the EMT.  相似文献   

7.
Sonic hedgehog regulates growth and morphogenesis of the tooth   总被引:28,自引:0,他引:28  
During mammalian tooth development, the oral ectoderm and mesenchyme coordinate their growth and differentiation to give rise to organs with precise shapes, sizes and functions. The initial ingrowth of the dental epithelium and its associated dental mesenchyme gives rise to the tooth bud. Next, the epithelial component folds to give the tooth its shape. Coincident with this process, adjacent epithelial and mesenchymal cells differentiate into enamel-secreting ameloblasts and dentin-secreting odontoblasts, respectively. Growth, morphogenesis and differentiation of the epithelium and mesenchyme are coordinated by secreted signaling proteins. Sonic hedgehog (Shh) encodes a signaling peptide which is present in the oral epithelium prior to invagination and in the tooth epithelium throughout its development. We have addressed the role of Shh in the developing tooth in mouse by using a conditional allele to remove Shh activity shortly after ingrowth of the dental epithelium. Reduction and then loss of Shh function results in a cap stage tooth rudiment in which the morphology is severely disrupted. The overall size of the tooth is reduced and both the lingual epithelial invagination and the dental cord are absent. However, the enamel knot, a putative organizer of crown formation, is present and expresses Fgf4, Wnt10b, Bmp2 and Lef1, as in the wild type. At birth, the size and the shape of the teeth are severely affected and the polarity and organization of the ameloblast and odontoblast layers is disrupted. However, both dentin- and enamel-specific markers are expressed and a large amount of tooth-specific extracellular matrix is produced. This observation was confirmed by grafting studies in which tooth rudiments were cultured for several days under kidney capsules. Under these conditions, both enamel and dentin were deposited even though the enamel and dentin layers remained disorganized. These studies demonstrate that Shh regulates growth and determines the shape of the tooth. However, Shh signaling is not essential for differentiation of ameloblasts or odontoblasts.  相似文献   

8.
Sonichedgehog(Shh)信号通路在牙早期发育中起关键作用,Shh通过与其特定的受体Ptc/Smo蛋白复合物相互作用来激活整个信号通路。Shh在牙早期发育过程中的表达具有时间和空间特异性,通过自分泌和旁分泌作用于上皮组织以及周围的间充质,促进细胞增殖、分化,调控牙的形态发生。Shh基因缺失将导致小鼠在帽状期牙形态的严重畸形,牙体变小,牙索缺失。对Shh信号通路在牙早期发育的作用及其与Wnt信号通路、BMP家族、FGF家族和MSX家族之间的相互关系进行综述。  相似文献   

9.
Nel-like molecule-1 (Nell-1) is a recently discovered secreted protein that plays an important role in osteoblast differentiation, bone formation, and bone regeneration. However, its expression and distribution during tooth development are largely unknown. The aim of this study was to investigate the expression patterns of Nell-1 during murine molar development by immunohistochemistry. Nell-1 protein was expressed during molar development in embryonic and postnatal Kunming mice, but its expression levels and patterns at various developmental stages differed. At embryonic day 13.5 (E13.5) and E14.5, Nell-1 was found in both the entire enamel organ and the underlying mesenchyme. At E16.5, it was detected in the inner and outer enamel epithelia, stratum intermedium, secondary enamel knot, and dental papilla. At E18.5, Nell-1 was expressed in the differentiating ameloblasts, differentiating odontoblasts, and stratum intermedium. Positive staining was also found in the outer enamel epithelium. At postnatal day 2.5 (P2.5), P5, and P7, Nell-1 appeared in the secretory and mature ameloblasts and odontoblasts (odontoblastic bodies and processes) as well as immature enamel. Hertwig’s epithelial root sheath also stained positively at P7. At P13.5, positive staining was restricted to the reduced dental epithelium and odontoblasts, whereas Nell-1 disappeared in the mature enamel. During tooth eruption, Nell-1 was observed only in the odontoblastic bodies, odontoblastic processes, and endothelial cells of blood vessels. The spatiotemporal expression patterns of Nell-1 during murine tooth development suggest that it might play an important role in ameloblast and odontoblast differentiation, secretion and mineralization of the extracellular enamel matrix, molar crown morphogenesis, as well as root formation.  相似文献   

10.
Sonic hedgehog (Shh), a member of the mammalian Hedgehog (Hh) family, plays a key role during embryogenesis and organogenesis. Tooth development, odontogenesis, is governed by sequential and reciprocal epithelial-mesenchymal interactions. Genetic removal of Shh activity from the dental epithelium, the sole source of Shh during tooth development, alters tooth growth and cytological organization within both the dental epithelium and mesenchyme of the tooth. In this model it is not clear which aspects of the phenotype are the result of the direct action of Shh on a target tissue and which are indirect effects due to deficiencies in reciprocal signalings between the epithelial and mesenchymal components. To distinguish between these two alternatives and extend our understanding of Shh's actions in odontogenesis, we have used the Cre-loxP system to remove Smoothened (Smo) activity in the dental epithelium. Smo, a seven-pass membrane protein is essential for the transduction of all Hh signals. Hence, removal of Smo activity from the dental epithelium should block Shh signaling within dental epithelial derivatives while preserving normal mesenchymal signaling. Here we show that Shh-dependent interactions occur within the dental epithelium itself. The dental mesenchyme develops normally up until birth. In contrast, dental epithelial derivatives show altered proliferation, growth, differentiation and polarization. Our approach uncovers roles for Shh in controlling epithelial cell size, organelle development and polarization. Furthermore, we provide evidence that Shh signaling between ameloblasts and the overlying stratum intermedium may involve subcellular localization of Patched 2 and Gli1 mRNAs, both of which are targets of Shh signaling in these cells.  相似文献   

11.
12.
13.
We have analyzed the expression of early growth response gene (Egr-1) by mRNA in situ hybridization during mouse embryonic tooth development and in experimental recombinations of dental epithelium and mesenchyme. Egr-1 was transiently and recurrently expressed both in epithelial and mesenchymal cells starting from day 13 of gestation and up to 4 days after birth. The expression correlated with developmental transition points of dental mesenchymal and epithelial cells suggesting a role for Egr-1 in sequential determination and differentiation of cells. In recombination cultures of early dental epithelium and mesenchyme Egr-1 RNA was localized at the epithelial-mesenchymal interface in mesenchymal cells, and in two cases also in epithelial cells. These data indicate that Egr-1 expression may be regulated by epithelial-mesenchymal interactions when they are specific enough to initiate differentiation. We have also analyzed by in situ hybridization whether Wilms' tumour-1 gene (wt-1) is expressed in the developing tooth as it was proposed on the bases of in vitro studies that it may inhibit Egr-1 expression. No wt-1 expression was detected at any stage of tooth development showing that wt-1 is not obligatory for regulation of Egr-1 expression.  相似文献   

14.
15.
16.
Expression of sonic hedgehog (Shh) is required for normal development of the lung during embryogenesis. Loss of Shh expression in mice results in tracheoesophageal fistula, lung hypoplasia, and abnormal lung lobulation. To determine whether Shh may play a role later in lung morphogenesis, immunostaining for Shh was performed in mouse lung from embryonic day (E) 10.5 to postnatal day (PD) 24. Shh was detected in the distal epithelium of the developing mouse lung from E10.5 to E16.5. From E16.5 until PD15, Shh was present in epithelial cells in both the peripheral and conducting airways. Although all cells of the developing epithelium uniformly expressed Shh at E10.5, Shh expression was restricted to subsets of epithelial cells by E16.5. Between E16.5 and PD15, non-uniform Shh staining of epithelial cells was observed in the conducting airways in a pattern consistent with the distribution of non-ciliated bronchiolar cells (i.e., Clara cells) and the Clara cell marker CCSP. Shh did not co-localize with hepatocyte nuclear factor/forkhead homologue-4 (HFH-4), beta-tubulin, or with the presence of cilia. These results support the concept that Shh plays a distinct regulatory role in the lung later in morphogenesis, when it may influence formation or cytodifferentiation of the conducting airways.  相似文献   

17.
Sonic hedgehog (Shh) was isolated from the Xenopus laevis intestine as an early thyroid hormone (TH) response gene. To investigate possible roles of TH-upregulated expression of Shh during metamorphosis, we raised a polyclonal antibody against Xenopus Shh and immunohistochemically examined the relationship between Shh expression and the larval-to-adult intestinal remodeling at the cellular level. Our results indicate that the epithelial-specific expression of Shh in the intestine spatiotemporally correlates well with active proliferation and/or initial differentiation of the secondary (adult) epithelial primordia that originate from stem cells, but not with apoptosis of the primary (larval) epithelium. Given the similar transformations of the stomach during metamorphosis, we also analyzed Shh expression in this organ and found similar correlations in the stomach, although the position of the adult epithelial primordia and their final differentiation in the stomach are different from those in the intestine. Furthermore, we show here that Shh expression is organ-autonomously induced by TH and its correlation with the adult epithelial development is reproduced in vitro in both the intestine and the stomach. More importantly, addition of recombinant Shh protein to the culture medium results in developmental anomalies of both organs. However, differentiation of the adult epithelium is more severely inhibited by exogenous Shh in the intestine than in the stomach. These results suggest that TH-upregulated expression of Shh plays important roles in the postembryonic gastrointestinal remodeling, but its roles are at least partially different between the intestine and the stomach.  相似文献   

18.

Background

The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood.

Results

We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region.

Conclusion

We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.  相似文献   

19.
Dental follicle cells (DFCs) activate and recruit osteoclasts for tooth development and tooth eruption, whereas DFCs themselves differentiate into osteoblasts to form alveolar bone surrounding tooth roots through the interaction with Hertwig's epithelial root sheath (HERS). Also during tooth development, parathyroid hormone-related peptide (PTHrP) is expressed surrounding the tooth germ. Thus, we aimed to investigate the effect of PTHrP (1–34) on bone resorption and osteogenesis of DFCs in vitro and in vivo. In vitro studies demonstrated that DFCs cocultured with HERS cells expressed higher levels of BSP and OPN than the DFCs control group, whereas cocultured DFCs treated with PTHrP (1–34) had lower expressions of ALP, RUNX2, BSP, and OPN than the cocultured DFCs control group. Moreover, we found PTHrP (1–34) inhibited osteogenesis of cocultured DFCs by inactivating the Wnt/β-catenin pathway. PTHrP (1–34) also increased the expression of RANKL/OPG ratio in DFCs. Consistently, in vivo study found that PTHrP (1–34) accelerated tooth eruption and inhibited alveolar bone formation. Therefore, these results suggest that PTHrP (1–34) accelerates tooth eruption and inhibits osteogenesis of DFCs by inactivating Wnt/β-catenin pathway.  相似文献   

20.
Sonic hedgehog (Shh) is a key signal protein in early embryological patterning of limb bud development. Its analog, Indian hedgehog (Ihh), primarily expressed during early cartilage development in prehypertrophic chondrocytes, regulates proliferation and suppresses terminal differentiation of postnatal growth plate (GP) chondrocytes. We report here for the first time that both Shh and Ihh mRNA are expressed in the GP of rapidly growing 6-week-old broiler-strain chickens. They are also expressed in other tissues such as articular chondrocytes, kidney, and bone. In situ hybridization and RT-PCR analyses reveal Shh in all zones of the GP, with peak expression in late hypertrophy. Using primary cultures of GP chondrocytes in serum-containing medium, we followed the patterns of Shh and Ihh mRNA expression as the cultures matured and mineralized. We find a cyclical expression of both hedgehog genes during the early period of culture development between day 10 and 14; when one is elevated, the other tended to be suppressed, suggesting that the two hedgehogs may play complementary roles during GP development. Retinoic acid (RA), a powerful modulator of gene expression in cell differentiation, stimulates GP chondrocytes toward terminal differentiation, enhancing mineral formation. We find that RA strongly suppresses Ihh, but enhances expression of Shh in this system. While Ihh suppresses maturation of GP chondrocytes to hypertrophy, we hypothesize that Shh acts to push these cells toward hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号