首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the human heat shock (HSP) family of related proteins are involved in the intracellular folding, transport, and assembly of proteins and protein complexes. We have observed that human heat shock protein 70 (HSP70) is associated with the capsid precursor P1 of poliovirus and coxsackievirus B1 in infected HeLa cells. Antiserum generated against HSP70 coimmunoprecipitated the poliovirus protein P1, an intermediate in capsid assembly. Similarly, alpha-virion serum coimmunoprecipitated HSP70 from virus-infected cell extracts, but not from mock-infected cell extracts. The HSP70-P1 complex was stable in high-salt medium but was sensitive to incubation with 2 mM ATP, which is a characteristic of other known functional complexes between HSP70 and cellular proteins. The P1 in the complex was predominantly newly synthesized, and the half-life of complexed P1 was nearly twice as long as that of total P1. The HSP70-P1 complex was found to sediment at 3S to 6S, suggesting that it may be part of, or a precursor to, the "5S promoter particles" thought to be an assembly intermediate of picornaviruses. The finding that HSP70 was associated with the capsid precursors of at least two enteroviruses may suggest a functional role of these complexes in the viral life cycles.  相似文献   

2.
Members of the 70-kDa family of cellular stress proteins assit in protein folding by preventing inappropriate intra- and intermolecular interactions during normal protein synthesis and transport and when cells are exposed to a variety of environmental stresses. During infection of A31 mouse fibroblasts with polyomavirus, the constitutive form of hsp70, hsc70, coimmunoprecipitated with all three viral capsid proteins (VP1, VP2, and VP3). In addition, the subcellular location of hsc70 changed from cytoplasmic to nuclear late in polyomavirus infection, coincident with the nuclear localization of the viral capsid proteins. VP1 and VP2 expressed in Sf9 insect cells with recombinant baculovirus vectors also coimmunoprecipitated with an hsp70-like protein, and VP1 expressed in Escherichia coli coimmunoprecipitated with the hsp70 homolog DnaK. Capsid proteins expressed by in vitro translation coimmunoprecipitated with the hsc70 protein present in the reticulocyte translation extract. Therefore, the polyomavirus capsid proteins associate with hsc70 during virus infection as well as in recombinant protein expression systems. This association may play a role in preventing the premature assembly of capsids in the cytosol and/or in facilitating the nuclear transport of capsid protein complexes.  相似文献   

3.
Transient disulfide bonding occurs during the intracellular folding and pentamerization of simian virus 40 (SV40) major capsid protein Vp1 (P. P. Li, A. Nakanishi, S. W. Clark, and H. Kasamatsu, Proc. Natl. Acad. Sci. USA 99:1353-1358, 2002). We investigated the requirement for Vp1 cysteine pairs during SV40 infection. Our analysis identified three Vp1 double-cysteine mutant combinations that abolished viability as assayed by plaque formation. Mutating the Cys49-Cys87 pair or the Cys87-Cys254 pair led to ineffective nuclear localization and diminished accumulation of the mutant Vp1s, and the defect extended in a dominant-negative manner to the wild-type minor capsid proteins Vp2/3 and an affinity-tagged recombinant Vp1 expressed in the same cells. Mutating the Cys87-Cys207 pair preserved the nuclear localization and normal accumulation of the capsid proteins but diminished the production of virus-like particles. Our results are consistent with a role for Cys49, Cys87, and Cys254 in the folding and cytoplasmic-nuclear trafficking of Vp1 and with a role for Cys87 and Cys207 in the assembly of infectious particles. These findings suggest that transient disulfide bond formation between certain Vp1 cysteine residues functions at two stages of SV40 infection: during Vp1 folding and oligomerization in the cytoplasm and during virion assembly in the nucleus.  相似文献   

4.
The exposure of molecular signals for simian virus 40 (SV40) cell entry and nuclear entry has been postulated to involve calcium coordination at two sites on the capsid made of Vp1. The role of calcium-binding site 2 in SV40 infection was examined by analyzing four single mutants of site 2, the Glu160Lys, Glu160Arg, Glu157Lys (E157K), and Glu157Arg mutants, and an E157K-E330K combination mutant. The last three mutants were nonviable. All mutants replicated viral DNA normally, and all except the last two produced particles containing all three capsid proteins and viral DNA. The defect of the site 1-site 2 E157K-E330K double mutant implies that at least one of the sites is required for particle assembly in vivo. The nonviable E157K particles, about 10% larger in diameter than the wild type, were able to enter cells but did not lead to T-antigen expression. Cell-internalized E157K DNA effectively coimmunoprecipitated with anti-Vp1 antibody, but little of the DNA did so with anti-Vp3 antibody, and none was detected in anti-importin immunoprecipitate. Yet, a substantial amount of Vp3 was present in anti-Vp1 immune complexes, suggesting that internalized E157K particles are ineffective at exposing Vp3. Our data show that E157K mutant infection is blocked at a stage prior to the interaction of the Vp3 nuclear localization signal with importins, consistent with a role for calcium-binding site 2 in postentry steps leading to the nuclear import of the infecting SV40.  相似文献   

5.
Chemical chaperones are small organic molecules which accumulate in a broad range of organisms in various tissues under different stress conditions and assist in the maintenance of a correct proteostasis under denaturating environments. The effect of chemical chaperones on protein folding and aggregation has been extensively studied and is generally considered to be mediated through non-specific interactions. However, the precise mechanism of action remains elusive. Protein self-assembly is a key event in both native and pathological states, ranging from microtubules and actin filaments formation to toxic amyloids appearance in degenerative disorders, such as Alzheimer''s and Parkinson''s diseases. Another pathological event, in which protein assembly cascade is a fundamental process, is the formation of virus particles. In the late stage of the virus life cycle, capsid proteins self-assemble into highly-ordered cores, which encapsulate the viral genome, consequently protect genome integrity and mediate infectivity. In this study, we examined the effect of different groups of chemical chaperones on viral capsid assembly in vitro, focusing on HIV-1 capsid protein as a system model. We found that while polyols and sugars markedly inhibited capsid assembly, methylamines dramatically enhanced the assembly rate. Moreover, chemical chaperones that inhibited capsid core formation, also stabilized capsid structure under thermal denaturation. Correspondingly, trimethylamine N-oxide, which facilitated formation of high-order assemblies, clearly destabilized capsid structure under similar conditions. In contrast to the prevailing hypothesis suggesting that chemical chaperones affect proteins through preferential exclusion, the observed dual effects imply that different chaperones modify capsid assembly and stability through different mechanisms. Furthermore, our results indicate a correlation between the folding state of capsid to its tendency to assemble into highly-ordered structures.  相似文献   

6.
The 70-kDa heat shock protein (HSP70) family of molecular chaperones represents one of the most ubiquitous classes of chaperones and is highly conserved in all organisms. Members of the HSP70 family control all aspects of cellular proteostasis such as nascent protein chain folding, protein import into organelles, recovering of proteins from aggregation, and assembly of multi-protein complexes. These chaperones augment organismal survival and longevity in the face of proteotoxic stress by enhancing cell viability and facilitating protein damage repair. Extracellular HSP70s have a number of cytoprotective and immunomodulatory functions, the latter either in the context of facilitating the cross-presentation of immunogenic peptides via major histocompatibility complex (MHC) antigens or in the context of acting as “chaperokines” or stimulators of innate immune responses. Studies have linked the expression of HSP70s to several types of carcinoma, with Hsp70 expression being associated with therapeutic resistance, metastasis, and poor clinical outcome. In malignantly transformed cells, HSP70s protect cells from the proteotoxic stress associated with abnormally rapid proliferation, suppress cellular senescence, and confer resistance to stress-induced apoptosis including protection against cytostatic drugs and radiation therapy. All of the cellular activities of HSP70s depend on their adenosine-5′-triphosphate (ATP)-regulated ability to interact with exposed hydrophobic surfaces of proteins. ATP hydrolysis and adenosine diphosphate (ADP)/ATP exchange are key events for substrate binding and Hsp70 release during folding of nascent polypeptides. Several proteins that bind to distinct subdomains of Hsp70 and consequently modulate the activity of the chaperone have been identified as HSP70 co-chaperones. This review focuses on the regulation, function, and relevance of the molecular Hsp70 chaperone machinery to disease and its potential as a therapeutic target.  相似文献   

7.
Adeno-associated virus (AAV) is gaining momentum as a gene therapy vector for human applications. However, there remain impediments to the development of this virus as a vector. One of these is the incomplete understanding of the biology of the virus, including nuclear targeting of the incoming virion during initial infection, as well as assembly of progeny virions from structural components in the nucleus. Toward this end, we have identified four basic regions (BR) on the AAV2 capsid that represent possible nuclear localization sequence (NLS) motifs. Mutagenesis of BR1 ((120)QAKKRVL(126)) and BR2 ((140)PGKKRPV(146)) had minor effects on viral infectivity ( approximately 4- and approximately 10-fold, respectively), whereas BR3 ((166)PARKRLN(172)) and BR4 ((307)RPKRLN(312)) were found to be essential for infectivity and virion assembly, respectively. Mutagenesis of BR3, which is located in Vp1 and Vp2 capsid proteins, does not interfere with viral production or trafficking of intact AAV capsids to the nuclear periphery but does inhibit transfer of encapsidated DNA into the nucleus. Substitution of the canine parvovirus NLS rescued the BR3 mutant to wild-type (wt) levels, supporting the role of an AAV NLS motif. In addition, rAAV2 containing a mutant form of BR3 in Vp1 and a wt BR3 in Vp2 was found to be infectious, suggesting that the function of BR3 is redundant between Vp1 and Vp2 and that Vp2 may play a role in infectivity. Mutagenesis of BR4 was found to inhibit virion assembly in the nucleus of transfected cells. This affect was not completely due to the inefficient nuclear import of capsid subunits based on Western blot analysis. In fact, aberrant capsid foci were observed in the cytoplasm of transfected cells, compared to the wild type, suggesting a defect in early viral assembly or trafficking. Using three-dimensional structural analysis, the lysine- and arginine-to-asparagine change disrupts hydrogen bonding between these basic residues and adjacent beta strand glutamine residues that may prevent assembly of intact virions. Taken together, these data support that the BR4 domain is essential for virion assembly. Each BR was also found to be conserved in serotypes 1 to 11, suggesting that these regions are significant and function similarly in each serotype. This study establishes the importance of two BR motifs on the AAV2 capsid that are essential for infectivity and virion assembly.  相似文献   

8.
Stress proteins (heat shock proteins, HSP) play essential roles in folding, assembly and translocation of polypeptides and also in maintenance of the integrity of polypeptides as molecular chaperones. Since long-lasting hyperglycemia causes modification of cellular proteins, it is possible that expression of molecular chaperones may be altered during the course of diabetes. Here, we examined the cellular levels of stress proteins such as HSP105, HSP90 and HSC70/HSP70 in various tissues of streptozotocin-induced diabetic rats. In comparison to controls, the levels of HSC70 were markedly decreased in the liver but not in the brain, adrenal gland and pancreas of diabetic rats. The levels of HSP105 and HSP90 were not significantly changed in these tissues of diabetic rats. Furthermore, the induction of HSP70 as well as HSC70 by hyperthermia was significantly reduced in the liver and adrenal gland of diabetic rats. These results suggested that the expression and induction of HSC70/HSP70 may be altered during the course of diabetic disease and may result in impairment of the cytoprotective ability of diabetic rats.  相似文献   

9.
It is generally believed that cellular chaperones facilitate the folding of virus capsid proteins, or that capsid proteins fold spontaneously. Here we show that p73, the major capsid protein of African swine fever virus (ASFV) failed to fold and aggregated when expressed alone in cells. This demonstrated that cellular chaperones were unable to aid the folding of p73 and suggested that ASFV may encode a chaperone. An 80-kDa protein encoded by ASFV, termed the capsid-associated protein (CAP) 80, bound to the newly synthesized capsid protein in infected cells. The 80-kDa protein was released following conformational maturation of p73 and dissociated before capsid assembly. Coexpression of the 80-kDa protein with p73 prevented aggregation and allowed the capsid protein to fold with kinetics identical to those seen in infected cells. CAP80 is, therefore, a virally encoded chaperone that facilitates capsid protein folding by masking domains exposed by the newly synthesized capsid protein, which are susceptible to aggregation, but cannot be accommodated by host chaperones. It is likely that these domains are ultimately buried when newly synthesized capsid proteins are added to the growing capsid shell.  相似文献   

10.
Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrated into the endoplasmic reticulum (ER) membrane system and, upon correct folding, are trafficked by the secretory pathway to the cell surface. Misfolded mutant forms traffic poorly, if at all, and are instead degraded by the ER-associated proteasomal degradation (ERAD) system. Molecular chaperones can assist the folding of the cytosolic domains of these transmembrane proteins; however, these chaperones are also involved in selecting misfolded forms for ERAD. Given this dual role of chaperones, diseases caused by the misfolding and aberrant trafficking of ion channels (referred to here as ion-channel-misfolding diseases) can be regarded as a consequence of insufficiency of the pro-folding chaperone activity and/or overefficiency of the chaperone ERAD role. An attractive idea is that manipulation of the chaperones might allow increased folding and trafficking of the mutant proteins, and thereby partial restoration of function. This Review outlines the roles of the cytosolic HSP70 chaperone system in the best-studied paradigms of ion-channel-misfolding disease – the CFTR chloride channel in cystic fibrosis and the hERG potassium channel in cardiac long QT syndrome type 2. In addition, other ion channels implicated in ion-channel-misfolding diseases are discussed.KEY WORDS: Chaperone, Cystic fibrosis, Long QT syndrome, Degradation, Intracellular trafficking, Protein folding  相似文献   

11.
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.  相似文献   

12.
13.
Hsp70 chaperones play a role in polyoma- and papillomavirus assembly, as evidenced by their interaction in vivo with polyomavirus capsid proteins at late times after virus infection and by their ability to assemble viral capsomeres into capsids in vitro. We studied whether Hsp70 chaperones might also participate in the uncoating reaction. In vivo, Hsp70 co-immunoprecipitated with polyomavirus virion VP1 at 3 h after infection of mouse cells. In vitro, prokaryotic and eukaryotic Hsp70 chaperones efficiently disassembled polyoma- and papillomavirus-like particles and virions in energy-dependent reactions. These observations support a role for cell chaperones in the disassembly of these viruses.  相似文献   

14.
The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by their sucrose gradient sedimentation profiles, in vitro translated C247A Vp1 formed pentamers, but in vitro translated C80A Vp1 was entirely monomeric. When individually incorporated into the JCV genome, the C80A and C247A mutants, but not the other Vp1 cysteine residues mutants, interfered with JCV infectivity. Furthermore, the C80A, but not the C247A, mutation prevented the nuclear localization of Vp1 in JCV genome transfected cells. These findings suggest that C80 of JCV Vp1 is required for Vp1 stability and pentamer formation, and C247 is involved in capsid assembly in the nucleus.  相似文献   

15.
Polyglutamine protein aggregation is associated with eight inherited neurodegenerative disorders. In Huntington's disease, N-terminal fragments of mutant huntingtin form intracellular aggregates and mediate cellular toxicity. Recent studies have shown that chaperones inhibit polyglutamine-mediated aggregation and cellular toxicity. Because chaperones also inhibit caspase activation to protect cells from death, it remains unclear whether the protective effect of chaperones on polyglutamine-mediated cellular toxicity is dependent on their inhibition of protein aggregation. In this study, we show that several chaperones including HSP 40, HSP 70, and N-ethylmaleimide-sensitive factor can inhibit cellular toxicity caused by N-terminal mutant huntingtin fragments. However, only HSP 40 is able to inhibit huntingtin aggregation. Furthermore, time-course study suggests that the protection of chaperones against huntingtin toxicity is not the result of their suppression of huntingtin aggregation. Chaperones inhibit caspase-3 and caspase-9 activation mediated by mutant huntingtin, and this inhibition is independent of huntingtin aggregation. We propose that the inhibition of caspase activity by chaperones is involved in their suppression of polyglutamine toxicity.  相似文献   

16.
Procollagen assembly occurs within the endoplasmic reticulum, where the C-propeptide domains of three polypeptide alpha-chains fold individually, and then interact and trimerise to initiate folding of the triple helical region. This highly complex folding and assembly pathway requires the co-ordinated action of a large number of endoplasmic reticulum-resident enzymes and molecular chaperones. Disease-causing mutations in the procollagens disturb folding and assembly and lead to prolonged interactions with molecular chaperones, retention in the endoplasmic reticulum, and intracellular degradation. This review focuses predominantly on prolyl 1-hydroxylase, an essential collagen modifying enzyme, and HSP47, a collagen-specific binding protein, and their proposed roles as molecular chaperones involved in fibrillar procollagen folding and assembly, quality control, and secretion.  相似文献   

17.
Co-chaperones help to maintain cellular homeostasis by modulating the activities of molecular chaperones involved in protein quality control. The HSP70/HSP90-organizing protein (HOP) is a co-chaperone that cooperates with HSP70 and HSP90 in catalysis of protein folding and maturation in the cytosol. We show here that HOP has ATP-binding activity comparable to that of HSP70/HSP90, and that HOP slowly hydrolyzes ATP. Analysis of deletion mutants revealed that the ATPase domain of HOP is in the N-terminal TPR1-DP1-TPR2A segment. In addition, HOP changes its conformation in the presence of ATP. These results indicate that HOP is a unique co-chaperone that undergoes an ATP-dependent conformational change.  相似文献   

18.
19.
Polyomavirus and papillomavirus (papovavirus) capsids are composed of 72 capsomeres of their major capsid proteins, VP1 and L1, respectively. After translation in the cytoplasm, L1 and VP1 pentamerize into capsomeres and are then imported into the nucleus using the cellular α and β karyopherins. Virion assembly only occurs in the nucleus, and cellular mechanisms exist to prevent premature capsid assembly in the cytosol. We have identified the karyopherin family of nuclear import factors as possible “chaperones” in preventing the cytoplasmic assembly of papovavirus capsomeres. Recombinant murine polyomavirus (mPy) VP1 and human papillomavirus type 11 (HPV11) L1 capsomeres bound the karyopherin heterodimer α2β1 in vitro in a nuclear localization signal (NLS)-dependent manner. Because the amino acid sequence comprising the NLS of VP1 and L1 overlaps the previously identified DNA binding domain, we examined the relationship between karyopherin and DNA binding of both mPy VP1 and HPV11 L1. Capsomeres of L1, but not VP1, bound by karyopherin α2β1 or β1 alone were unable to bind DNA. VP1 and L1 capsomeres could bind both karyopherin α2 and DNA simultaneously. Both VP1 and L1 capsomeres bound by karyopherin α2β1 were unable to assemble into capsids, as shown by in vitro assembly reactions. These results support a role for karyopherins as chaperones in the in vivo regulation of viral capsid assembly.  相似文献   

20.
A DNA-binding domain (DBD) was identified on simian virus 40 (SV40) major capsid protein Vp1, and the domain's function in the SV40 life cycle was examined. The DBD was mapped by assaying various recombinant Vp1 proteins for DNA binding in vitro. The carboxy-terminal 58-residue truncated Vp1DeltaC58 pentamer bound DNA with a K(d) of 1.8 x 10(-9) M in terms of the protein pentamer, while full-length Vp1 and carboxy-terminal-17-truncated Vp1DeltaC17 had comparable apparent K(d)s of 5.3 x 10(-9) to 7.3 x 10(-9) M in terms of the protein monomers. Previously identified on Vp1 was a nuclear localization signal (NLS) consisting of two N-terminal basic clusters, NLS1 (4-KRK-6) and NLS2 (15-KKPK-18). Vp1DeltaC58 pentamers harboring multiple-point mutations in NLS1 (NLSm1), NLS2 (NLSm2), or both basic clusters (NLSm1. 2) had progressively decreased DNA-binding activity, down to 0.7% of the Vp1DeltaC58 level for NLSm1. 2 Vp1. These data, along with those of N-terminally truncated proteins, placed the DBD in overlap with the bipartite NLS. The role of the Vp1 DBD during infection was investigated by taking advantage of NLS phenotypic complementation (N. Ishii, A. Nakanishi, M. Yamada, M. H. Macalalad, and H. Kasamatsu, J. Virol. 68:8209-8216, 1994), in which an NLS-defective Vp1 could localize to the nucleus in the presence of wild-type minor capsid proteins Vp2 and Vp3. This approach made it possible to dissect the role of the bifunctional Vp1 NLS-DBD in virion assembly in the nucleus. Mutants of the viable nonoverlapping SV40 (NO-SV40) DNA NLSm1, NLSm2, and NLSm1. 2 replicated normally following transfection into host cells and produced capsid proteins at normal levels. All mutant Vp1s were able to interact with Vp3 in vitro. The mutants NLSm1 and NLSm1. 2 were nonviable, and the mutant Vp1s unexpectedly failed to localize to the nucleus though Vp2 and Vp3 did, suggesting that the mutated NLS1 acted as a dominant signal for the cytoplasmic localization of Vp1. Mutant NLSm2, for which the mutant Vp1's nuclear localization defect was complemented by Vp2 and Vp3, displayed a 5,000-fold reduced viability. Analysis of NLSm2 DNA-transfected cell lysate revealed a 10-fold reduction in the level of DNase I-protected viral DNA, and yet virion-like particles were found among the DNase I-resistant material. Collective results support a role for Vp1 NLS2-DBD2 in the assembly of virion particles. The results also suggest that this determinant can function in the infection of new cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号