首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have developed a new nonoverlapping infectious viral genome (NO-SV40) in order to facilitate structure-based analysis of the simian virus 40 (SV40) life cycle. We first tested the role of cysteine residues in the formation of infectious virions by individually mutating the seven cysteines in the major capsid protein, Vp1. All seven cysteine mutants-C9A, C49A, C87A, C104A, C207S, C254A, and C267L-retained viability. In the crystal structure of SV40, disulfide bridges are formed between certain Cys104 residues on neighboring pentamers. However, our results show that none of these disulfide bonds are required for virion infectivity in culture. We also introduced five different mutations into Cys254, the most strictly conserved cysteine across the polyomavirus family. We found that C254L, C254S, C254G, C254Q, and C254R mutants all showed greatly reduced (around 100,000-fold) plaque-forming ability. These mutants had no apparent defect in viral DNA replication. Mutant Vp1's, as well as wild-type Vp2/3, were mostly localized in the nucleus. Further analysis of the C254L mutant revealed that the mutant Vp1 was able to form pentamers in vitro. DNase I-resistant virion-like particles were present in NO-SV40-C254L-transfected cell lysate, but at about 1/18 the amount in wild-type-transfected lysate. An examination of the three-dimensional structure reveals that Cys254 is buried near the surface of Vp1, so that it cannot form disulfide bonds, and is not involved in intrapentamer interactions, consistent with the normal pentamer formation by the C254L mutant. It is, however, located at a critical junction between three pentamers, on a conserved loop (G2H) that packs against the dual interpentamer Ca(2+)-binding sites and the invading C-terminal helix of an adjacent pentamer. The substitution by the larger side chains is predicted to cause a localized shift in the G2H loop, which may disrupt Ca(2+) ion coordination and the packing of the invading helix, consistent with the defect in virion assembly. Our experimental system thus allows dissection of structure-function relationships during the distinct steps of the SV40 life cycle.  相似文献   

2.
The 52-residue alpha/beta chimera of the epidermal growth factor-like domain in neu differentiation factor (NDFealpha/beta) has been synthesized and folded to form a three disulfide bridge (Cys182-Cys196, Cys190-Cys210, Cys212-Cys221) containing peptide. We investigated two general strategies for the formation of the intramolecular disulfide bridges including, the single-step approach, which used fully deprotected and reduced peptide, and a sequential approach that relied on orthogonal cysteine protection in which specific pairs are excluded from the first oxidation step. Because there are 15 possible disulfide bridge arrangements in a peptide with six cysteines, the one-step approach may not always provide the desired disulfide pairing. Here, we compare the single-step approach with a systematic evaluation of the sequential approach. We employed the acetamidomethyl group to protect each pair of cysteines involved in disulfide bridges, i.e. Cys182 to Cys196, Cys190 to Cys210 and Cys212 to Cys221. This reduced the number of possible disulfide patterns from 15 to three in the first folding step. We compared the efficiencies of folding for each protected pair using RP-HPLC, mapped the disulfide connectivity of the predominant product and then formed the final disulfide from the partially folded intermediate via 12 oxidation. Only the peptide having the Cys182-Cys196 pair blocked with acetamidomethyl forms the desired disulfide isomer (Cys190-Cys210/Cys212-Cys221) as a single homogeneous product. By optimizing both approaches, as well as other steps in the synthesis, we can now rapidly provide large-scale syntheses of NDFealpha/beta and other novel EGF-like peptides.  相似文献   

3.
The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by their sucrose gradient sedimentation profiles, in vitro translated C247A Vp1 formed pentamers, but in vitro translated C80A Vp1 was entirely monomeric. When individually incorporated into the JCV genome, the C80A and C247A mutants, but not the other Vp1 cysteine residues mutants, interfered with JCV infectivity. Furthermore, the C80A, but not the C247A, mutation prevented the nuclear localization of Vp1 in JCV genome transfected cells. These findings suggest that C80 of JCV Vp1 is required for Vp1 stability and pentamer formation, and C247 is involved in capsid assembly in the nucleus.  相似文献   

4.
RS1, also known as retinoschisin, is an extracellular protein that plays a crucial role in the cellular organization of the retina. Mutations in RS1 are responsible for X-linked retinoschisis, a common, early-onset macular degeneration in males that results in a splitting of the inner layers of the retina and severe loss in vision. RS1 is assembled and secreted from photoreceptors and bipolar cells as a homo-oligomeric protein complex. Each subunit consists of a 157-amino acid discoidin domain flanked by two small segments of 39 and 5 amino acids. To begin to understand how the structure of RS1 relates to its role in retinal cell adhesion and X-linked retinoschisis, we have determined the subunit organization and disulfide bonding pattern of RS1 by SDS gel electrophoresis, velocity sedimentation, and mass spectrometry. Our results indicate that RS1 exists as a novel octamer in which the eight subunits are joined together by Cys(59)-Cys(223) intermolecular disulfide bonds. Subunits within the octamer are further organized into dimers mediated by Cys(40)-Cys(40) bonds. These cysteines lie just outside the discoidin domain indicating that these flanking segments primarily function in the octamerization of RS1. Within the discoidin domain, two cysteine pairs (Cys(63)-Cys(219) and Cys(110)-Cys(142)) form intramolecular disulfide bonds that are important in protein folding, and one cysteine (Cys(83)) exists in its reduced state. Because mutations that disrupt subunit assembly cause X-linked retinoschisis, the assembly of RS1 into a disulfide-linked homo-octamer appears to be critical for its function as a retinal cell adhesion protein.  相似文献   

5.
Proper folding of newly synthesized viral proteins in the cytoplasm is a prerequisite for the formation of infectious virions. The major capsid protein Vp1 of simian virus 40 forms a series of disulfide-linked intermediates during folding and capsid formation. In addition, we report here that Vp1 is associated with cellular chaperones (HSP70) and a cochaperone (Hsp40) which can be coimmunoprecipitated with Vp1. Studies in vitro demonstrated the ATP-dependent interaction of Vp1 and cellular chaperones. Interestingly, viral cochaperones LT and ST were essential for stable interaction of HSP70 with the core Vp1 pentamer Vp1 (22-303). LT and ST also coimmunoprecipitated with Vp1 in vivo. In addition to these identified (co)chaperones, stable, covalently modified forms of Vp1 were identified for a folding-defective double mutant, C49A-C87A, and may represent a “trapped” assembly intermediate. By a truncation of the carboxyl arm of Vp1 to prevent the Vp1 folding from proceeding beyond pentamers, we detected several apparently modified Vp1 species, some of which were absent in cells transfected with the folding-defective mutant DNA. These results suggest that transient covalent interactions with known or unknown cellular and viral proteins are important in the assembly process.  相似文献   

6.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

7.
In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys352, and Cys355 of Ero1p are important for oxidative protein folding and for cell viability, whereas Cys90, Cys208, and Cys349 are dispensable for these functions. Substitution of Cys100 with alanine impedes the capture of Ero1p-Pdi1p mixed-disulfide complexes from yeast, and also blocks oxidation of Pdi1p in vivo. Cys352 and Cys355 are required to maintain the fully oxidized redox state of Ero1p, and also play an auxiliary role in thiol-disulfide exchange with Pdi1p. These results suggest a model for the function of Ero1p wherein Cys100 and Cys105 form a redox-active disulfide bond that engages directly in thiol-disulfide exchange with ER oxidoreductases. The Cys352-Cys355 disulfide could then serve to reoxidize the Cys100-Cys105 cysteine pair, possibly through an intramolecular thiol-disulfide exchange reaction.  相似文献   

8.
The TIM10 complex, composed of the homologous proteins Tim10 and Tim9, chaperones hydrophobic proteins inserted at the mitochondrial inner membrane. A salient feature of the TIM10 complex subunits is their conserved "twin CX3C" motif. Systematic mutational analysis of all cysteines of Tim10 showed that their underlying molecular defect is impaired folding (demonstrated by circular dichroism, aberrant homo-oligomer formation, and thiol trapping assays). As a result of defective folding, clear functional consequences were manifested in (i) complex formation with Tim9, (ii) chaperone activity, and (iii) import into tim9ts mitochondria lacking both endogenous Tim9 and Tim10. The organization of the four cysteines in intrachain disulfides was determined by trypsin digestion and mass spectrometry. The two distal CX3C motifs are juxtaposed in the folded structure and disulfide-bonded to each other rather than within each other, with an inner cysteine pair connecting Cys44 with Cys61 and an outer pair between Cys40 and Cys65. These cysteine pairs are not equally important for folding and assembly; mutations of the inner Cys are severely affected and form wrong, non-native disulfides, in contrast to mutations of the outer Cys that can still maintain the native inner disulfide pair and display weaker functional defects. Taken together these data reveal this specific intramolecular disulfide bonding as the crucial mechanism for Tim10 folding and show that the inner cysteine pair has a more prominent role in this process.  相似文献   

9.
The membrane-associated flavoprotein Ero1p promotes disulfide bond formation in the endoplasmic reticulum (ER) by selectively oxidizing the soluble oxidoreductase protein disulfide isomerase (Pdi1p), which in turn can directly oxidize secretory proteins. Two redox-active disulfide bonds are essential for Ero1p oxidase activity: Cys100-Cys105 and Cys352-Cys355. Genetic and structural data indicate a disulfide bond is transferred from Cys100-Cys105 directly to Pdi1p, whereas a Cys352-Cys355 disulfide bond is used to reoxidize the reduced Cys100-Cys105 pair through an internal thiol-transfer reaction. Electron transfer from Cys352-Cys355 to molecular oxygen, by way of a flavin cofactor, maintains Cys352-Cys355 in an oxidized form. Herein, we identify a mixed disulfide species that confirms the Ero1p intercysteine thiol-transfer relay in vivo and identify Cys105 and Cys352 as the cysteines that mediate thiol-disulfide exchange. Moreover, we describe Ero1p mutants that have the surprising ability to oxidize substrates in the absence of Cys100-Cys105. We show the oxidase activity of these mutants results from structural changes in Ero1p that allow substrates increased access to Cys352-Cys355, which are normally buried beneath the protein surface. The altered activity of these Ero1p mutants toward selected substrates leads us to propose the catalytic mechanism involving transfer between cysteine pairs evolved to impart substrate specificity to Ero1p.  相似文献   

10.
The disulfide structure of mouse lysosome-associated membrane protein 1   总被引:1,自引:0,他引:1  
The disulfide structure of mouse lysosome-associated membrane protein 1 has been determined by reverse-phase isolation and sequence analysis of the cysteine-containing tryptic fragments of the reduced and non-reduced deglycosylated protein. Half-cystines were distinguished (a) by their localization within tryptic or chymotryptic peptides that formed reverse-phase peaks unique to the reduced digests and (b) by their 3H-carboxymethylation only after reduction of the protein. The disulfide arrangement of the cysteines was assigned after isolation of disulfide-linked peptide pairs. Each pair chromatographed as a peak present in the nonreduced (but not the corresponding reduced) tryptic digest. NH2-terminal sequencing as well as reduction, alkylation, and rechromatography of the disulfide-linked fragments led to the following assignment of disulfide bonds: Cys11 and Cys50, Cys125 and Cys161, Cys198 and Cys235, and Cys303 and Cys340. This structure creates four 36-38-residue loops that are symmetrically placed within the two halves of the protein's intraluminal domain. The loops formed by the Cys11-Cys50 and Cys198-Cys235 bridges are homologous, and the Cys125-Cys161 and Cys303-cys340 loops form a second set of homologous domains. The conservation of cysteine residues among lysosome-associated membrane proteins 1 and 2 suggests that this disulfide arrangement is common to both members of this family of lysosomal membrane glycoproteins.  相似文献   

11.
The activation pathway of the chloroplastic NADP-dependent malate dehydrogenase (MDH) by reduced thioredoxin has been examined using a method based on the mechanism of thiol/disulfide interchanges, i.e. the transient formation of a mixed disulfide between the target and the reductant. This disulfide can be stabilized when each of the partners is mutated in the less reactive cysteine of the disulfide/dithiol pair. As NADP-MDH has two regulatory disulfides per monomer, four different single cysteine mutants were examined, two for the C-terminal bridge and two for the N-terminal bridge. The results clearly show that the nucleophilic attack of thioredoxin on the C-terminal bridge proceeds through the formation of a disulfide with the most external Cys377. The results are less clear-cut for the N-terminal cysteines and suggest that the Cys24-Cys207 disulfide bridge previously proposed to be an intermediary step in MDH activation can form only when the C-terminal disulfide is reduced.  相似文献   

12.
A DNA-binding domain (DBD) was identified on simian virus 40 (SV40) major capsid protein Vp1, and the domain's function in the SV40 life cycle was examined. The DBD was mapped by assaying various recombinant Vp1 proteins for DNA binding in vitro. The carboxy-terminal 58-residue truncated Vp1DeltaC58 pentamer bound DNA with a K(d) of 1.8 x 10(-9) M in terms of the protein pentamer, while full-length Vp1 and carboxy-terminal-17-truncated Vp1DeltaC17 had comparable apparent K(d)s of 5.3 x 10(-9) to 7.3 x 10(-9) M in terms of the protein monomers. Previously identified on Vp1 was a nuclear localization signal (NLS) consisting of two N-terminal basic clusters, NLS1 (4-KRK-6) and NLS2 (15-KKPK-18). Vp1DeltaC58 pentamers harboring multiple-point mutations in NLS1 (NLSm1), NLS2 (NLSm2), or both basic clusters (NLSm1. 2) had progressively decreased DNA-binding activity, down to 0.7% of the Vp1DeltaC58 level for NLSm1. 2 Vp1. These data, along with those of N-terminally truncated proteins, placed the DBD in overlap with the bipartite NLS. The role of the Vp1 DBD during infection was investigated by taking advantage of NLS phenotypic complementation (N. Ishii, A. Nakanishi, M. Yamada, M. H. Macalalad, and H. Kasamatsu, J. Virol. 68:8209-8216, 1994), in which an NLS-defective Vp1 could localize to the nucleus in the presence of wild-type minor capsid proteins Vp2 and Vp3. This approach made it possible to dissect the role of the bifunctional Vp1 NLS-DBD in virion assembly in the nucleus. Mutants of the viable nonoverlapping SV40 (NO-SV40) DNA NLSm1, NLSm2, and NLSm1. 2 replicated normally following transfection into host cells and produced capsid proteins at normal levels. All mutant Vp1s were able to interact with Vp3 in vitro. The mutants NLSm1 and NLSm1. 2 were nonviable, and the mutant Vp1s unexpectedly failed to localize to the nucleus though Vp2 and Vp3 did, suggesting that the mutated NLS1 acted as a dominant signal for the cytoplasmic localization of Vp1. Mutant NLSm2, for which the mutant Vp1's nuclear localization defect was complemented by Vp2 and Vp3, displayed a 5,000-fold reduced viability. Analysis of NLSm2 DNA-transfected cell lysate revealed a 10-fold reduction in the level of DNase I-protected viral DNA, and yet virion-like particles were found among the DNase I-resistant material. Collective results support a role for Vp1 NLS2-DBD2 in the assembly of virion particles. The results also suggest that this determinant can function in the infection of new cells.  相似文献   

13.
Profile of the disulfide bonds in acetylcholinesterase   总被引:20,自引:0,他引:20  
The inter- and intrasubunit disulfide bridges for the 11 S form of acetylcholinesterase isolated from Torpedo californica have been identified. Localized within the basal lamina of the synapse, the dimensionally asymmetric forms of acetylcholinesterase contain either two (13 S) or three (17 S) sets of catalytic subunits linked to collagenous and noncollagenous structural subunits. Limited proteolysis of these molecules yields a tetramer of catalytic subunits that sediments at 11 S. Each catalytic subunit contains 8 cysteine residues which were identified following tryptic digestion of the reduced, 14C-carboxymethylated protein. The tryptic peptides were purified by gel filtration followed by reverse-phase high performance liquid chromatography (HPLC) and then sequenced. The disulfide bonding profile was determined by treating the native, nonreduced 11 S form of acetylcholinesterase with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to tryptic digestion. Peptides again were resolved by gel filtration and reverse-phase HPLC. One fluorescent cysteine-containing peptide was identified, indicating that a single sulfhydryl residue, Cys231, was present in its reduced form. Three pairs of disulfide-bonded peptides were identified. These were localized in the polypeptide chain based on the cDNA-deduced sequence of the protein and were identified as Cys67-Cys94, Cys254-Cys265, and Cys402-Cys521. Hence, three loops are found in the secondary structure. Cys572, located in the carboxyl-terminal tryptic peptide, was disulfide-bonded to an identical peptide and most likely forms an intersubunit cross-link. Since the 6 cysteine residues in acetylcholinesterase that are involved in intrachain disulfide bonds are conserved in the sequence of the homologous protein thyroglobulin, it is likely that both proteins share a common folding pattern in their respective tertiary structures. Cys231 and the carboxyl-terminal cysteine residue Cys572 are not conserved in thyroglobulin.  相似文献   

14.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   

15.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

16.
Chang JY  Li L 《Biochemistry》2002,41(26):8405-8413
The pathway of oxidative folding of alpha-lactalbumin (alpha LA) (four disulfide bonds) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. In the absence of calcium, oxidative folding of alpha LA proceeds through highly heterogeneous species of one-, two-, three-, and four-disulfide (scrambled) intermediates to reach the native structure. In the presence of calcium, the folding intermediates of alpha LA comprise two predominant isomers (alpha LA-IIA and alpha LA-IIIA) adopting exclusively native disulfide bonds, including the two disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) located within the beta-sheet calcium binding domain. alpha LA-IIA is a two-disulfide species consisting of Cys(61)-Cys(77) and Cys(73)-Cys(91) disulfide bonds. alpha LA-IIIA contains Cys(61)-Cys(77), Cys(73)-Cys(91), and Cys(28)-Cys(111) disulfide bonds. The underlying mechanism of the contrasting folding pathways of calcium-bound and calcium-depleted alpha LA is congruent with the cause of diversity of disulfide folding pathways observed among many well-characterized three-disulfide proteins, including bovine pancreatic trypsin inhibitor and hirudin. Our study also reveals novel aspects of the folding mechanism of alpha LA that have not been described previously.  相似文献   

17.
Human Ero1alpha is an endoplasmic reticulum (ER)-resident protein responsible for protein disulfide isomerase (PDI) oxidation. To clarify the molecular mechanisms underlying its function, we generated a panel of cysteine replacement mutants and analyzed their capability of: 1) complementing a temperature-sensitive yeast Ero1 mutant, 2) favoring oxidative folding in mammalian cells, 3) forming mixed disulfides with PDI and ERp44, and 4) adopting characteristic redox-dependent conformations. Our results reveal that two essential cysteine triads (Cys85-Cys94-Cys99 and Cys391-Cys394-Cys397) cooperate in electron transfer, with Cys94 likely forming mixed disulfides with PDI. Dominant negative phenotypes arise when critical residues within the triads are mutated (Cys394, Cys397, and to a lesser extent Cys99). Replacing the first cysteine in either triad (Cys85 or Cys391) generates mutants with weaker activity. In addition, mutating either Cys85 or Cys391, but not Cys397, reverts the dominant negative phenotype of the C394A mutant. These findings suggest that interactions between the two triads, dependent on Cys85 and Cys391, are important for Ero1alpha function, possibly stabilizing a platform for efficient PDI oxidation.  相似文献   

18.
Envelope glycoprotein 71 from Friend murine leukemia virus was purified to homogeneity by reversed-phase HPLC. It could be shown that all 20 cysteine residues of the molecule are linked by disulfide bonds. After complete tryptic digestion, peptides containing cystine were identified by comparison of the reversed-phase HPLC profile of the digest with that of a reduced aliquot which had been subjected to affinity chromatography on thiol-Sepharose. The locations of the 10 disulfide bonds were determined by isolation, further digestion and analysis of peptides containing cystine. The first cysteine residue of the sequence (Cys46) was shown to be coupled to the sixth (Cys98), leading to a large loop containing four additional cysteine residues. Computer model building and energy calculations led to the assignment of Cys72 to Cys87 and Cys73 to Cys83. The following four cysteine residues of the sequence also constitute a structural unit, with Cys121 bonded to Cys141 and Cys133 to Cys146, and the last two cysteine residues in the amino-terminal domain of glycoprotein 71 form a small loop (Cys178 to Cys184). The first two cysteine residues of the carboxy-terminal domain produce a very small hydrophobic loop (Cys312-Cys315). Cys361 is bound to Cys373, Cys342 to Cys396 and Cys403 to Cys416. A model for the folding pattern of the viral glycoprotein is proposed.  相似文献   

19.
The folding of lysozyme and of alpha-lactalbumin exhibits vastly different kinetics and pathways. Existing evidence indicates that folding intermediates of alphaLA form a well-populated equilibrium molten globule state that is absent in the case of hen lysozyme. We demonstrate here such divergent folding mechanisms of lysozyme and alphaLA using the technique of disulfide scrambling. Two extensively unfolded homologous isomers (beads-form) of lysozyme (Cys6-Cys30, Cys64-Cys76, Cys80-Cys94, Cys115-Cys127) and alphaLA (Cys6-Cys28, Cys61-Cys73, Cys77-Cys91, Cys111-Cys120) were allowed to refold in parallel to form the native protein. Folding kinetics was measured by the recovery of the native structure. Folding intermediates, which illustrate the folding pathway, were trapped by quenching disulfide shuffling and were analyzed by reversed-phase high-pressure liquid chromatography. The results revealed that under identical folding conditions, the folding rate of lysozyme is about 30-fold faster than that of alphaLA. Folding intermediates of lysozyme are far less heterogeneous and sparsely populated than those of alphaLA. Numerous predominant on-pathway and off-pathway intermediates observed along the folding pathway of alphaLA are conspicuously absent in the case of lysozyme. The difference is most striking under fast folding conditions performed in the presence of protein disulfide isomerase. Under these conditions, folding of lysozyme undergoes a near two-state mechanism without accumulation of stable folding intermediates.  相似文献   

20.
The aggregating cartilage proteoglycan core protein contains two globular domains near the N terminus (G1 and G2) and one near the C terminus (G3). The G1-G3 domains contain 10, 8, and 10 cysteine residues, respectively. The disulfide assignments of the G1 domain have previously been deduced (Neame, P. J., Christner, J. E., and Baker, J. R. (1987) J. Biol. Chem. 262, 17768-17778) as Cys1-Cys2, Cys3-Cys6, Cys4-Cys5, Cys7-Cys10, and Cys8-Cys9, in which the numbers cited after the half-cystine residues are their relative positions from the N terminus. Here we describe a method for the isolation of disulfide-bonded peptides from tryptic digests of bovine nasal cartilage monomer. Sequence analysis of these peptides has allowed us to confirm the pairings previously determined for the G1 domain and to assign a disulfide pattern for the G2 domain of Cys11-Cys14, Cys12-Cys13, Cys15-Cys18, and Cys16-Cys17, in which the Cys15-Cys18 pairing was deduced indirectly. Similarly, for the G3 domain, a pattern of Cys19-Cys20, Cys21-Cys24, Cys22-Cys23, Cys25-Cys27, and Cys26-Cys28 was assigned, in which the Cys22-Cys23 pair was deduced indirectly. The G2 domain therefore contains disulfide bonding which is characteristic of the tandem repeat structures found in the G1 domain and link protein, and the G3 domain contains the three disulfide linkages previously assigned to the family of C-type animal lectins. The method described here, which combines anion-exchange, cation-exchange, and reversed-phase chromatography, should have broad application to the isolation of disulfide-bonded peptides from other heavily glycosylated proteins and proteoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号