首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
For testing the autonomic differentiation abilities of dorsal equatorial blastomeres of 32-cell Xenopus embryos, their roles in head formation in normal development and the organizer-inducing capabilities of the dorsal-most vegetal cells, interspecific transplantations were made using Xenopus borealis and X. laevis . When transplanted into the ventral region, the dorsal blastomeres produced descendants that differentiated into prechordal mesoderm, notochord and somites in the recipient according to their fates. They induced formation of the secondary embryo with the head and tail. The prechordal mesoderm and notochord in the secondary structure consisted of progeny of the graft, whereas somites and the CNS were chimeric and the pronephros was composed of host cells. Replacement of the dorsal blastomeres by ventral equatorial cells caused complete arrest of head formation in the recipient. Without exception, the notochord was completely absent or very thin. These results confirm the assumption that the presumptive head organizer in the Xenopus embryo is localized in the dorsal equatorial region at the 32-cell stage and comes into existence not under the inductive influence of the dorsal-most vegetal cells, but owing to allocation of morphogenetic determinants residing in the fertilized egg to the dorsal equatorial blastomeres of the 32-cell embryo.  相似文献   

2.
A new fate map for mesodermal tissues in Xenopus laevis predicted that the prime meridian, which runs from the animal pole to the vegetal pole through the center of Spemann's organizer, is the embryo's anterior midline, not its dorsal midline (M. C. Lane and W. C. Smith, 1999, Development 126, 423-434). In this report, we demonstrate by lineage labeling that the column 1 blastomeres at st. 6, which populate the prime meridian, give rise to the anterior end of the embryo. In addition, we surgically isolate and culture tissue centered on this meridian from early gastrulae. This tissue forms a patterned head with morphologically distinct ventral and dorsal structures. In situ hybridization and immunostaining reveal that the cultured heads contain the anterior tissues of all three germ layers, correctly patterned. Regardless of how we dissect early gastrulae along meridians running from the animal to the vegetal pole, both the formation of head structures and the expression of anterior marker genes always segregate with the prime meridian passing through Spemann's organizer. The prime meridian also gives rise to dorsal, axial mesoderm, but not uniquely, as specification tests show that dorsal mesoderm arises in fragments of the embryo which exclude the prime meridian. These results support the hypothesis that the midline that bisects Spemann's organizer is the embryo's anterior midline.  相似文献   

3.
Dorsal or ventral blastomeres of the 16- and 32-cell stage animal hemisphere were labeled with a lineage dye and transplanted into the position of a ventral, vegetal midline blastomere. The donor blastomeres normally give rise to substantial amounts of head structures and central nervous system, whereas the blastomere which they replaced normally gives rise to trunk mesoderm and endoderm. The clones derived from the transplanted ventral blastomeres were found in tissues appropriate for their new position, whereas those derived from the transplanted dorsal blastomeres were found in tissues appropriate for their original position. The transplanted dorsal clones usually migrated into the host's primary axis (D1.1, 92%; D1.1.1, 69%; D1.1.2, 100%), and in many cases they also induced and populated a secondary axis (D1.1, 43%; D1.1.1, 67%; D1.1.2, 63%). Bilateral deletion of the dorsal blastomeres resulted in partial deficits of dorsal axial structures in the majority of cases, whereas deletions of ventral midline blastomeres did not. When the dorsal blastomeres were cultured as explants they elongated. Notochord and cement glands frequently differentiated in these explants. These studies show that the progeny of the dorsal, midline, animal blastomeres: (1) follow their normal lineage program to populate dorsal axial structures after the blastomere is transplanted to the opposite pole of the embryo; (2) induce and contribute to a secondary axis from their transplanted position in many embryos; (3) are important for the normal formation of the entire length of the dorsal axis; and (4) autonomously differentiate in the absence of exogenous growth factor signals. These data indicate that by the 16-cell stage, these blastomeres have received instructions regarding their fate, and they are intrinsically capable of carrying out some of their developmental program.  相似文献   

4.
A polarity in gap junctional permeability normally exists in 32-cell stage Xenopus embryos, in that dorsal cells are relatively more coupled than ventral cells, as measured by transfer of Lucifer yellow dye. The current study extends our analysis of whether gap junctional permeability at this stage can be modulated by secreted factors, and whether the polarity in gap junctional permeability correlates with the effects of ectopic expression of these secreted factors on the subsequent phenotype of the developing embryo. Following ectopic expression of activin B or Wnt-1, but not bFGF, the transfer of Lucifer yellow between ventral animal pole cells is detected in a greater percentage of 32-cell stage embryos. This increased incidence of dye transfer between ventral cells correlates with axial duplications later in development. However, there are differences in the extent of Lucifer yellow transfer between animal and vegetal hemisphere blastomeres which is dependent on whether activin B or Wnt-1 RNA had previously been injected. These results suggest that enhanced gap junctional permeability between ventral cells of 32-cell Xenopus embryos correlates with subsequent defects in the dorsoventral axis, although there are at present no direct data demonstrating a role for gap junctions in establishment or maintenance of this axis. Moreover, while both activin B and bFGF are mesoderm-inducing growth factors, only activin B has effects on gap junctional permeability in 32-cell embryos following ectopic expression, demonstrating an interesting difference in physiological responses to expression of these factors.  相似文献   

5.
The formation of the amphibian organizer is evidenced by the ability of cells of the dorsal marginal zone (DMZ) to self-differentiate to form notochord and to induce the formation of other axial structures from neighboring regions of the embryo. We have attempted to determine when these abilities are acquired in the urodele, Ambystoma mexicanum (axolotl), and in the anuran, Xenopus laevis, by removing the mesodermalizing influence of the vegetal hemisphere at different stages of development and culturing the animal hemisphere isolate. This was possible, even at the 32 and 64-cell stage, through the use of embryos with rare cleavage patterns. Cultured isolates were analyzed for morphological differentiation of mesodermal and neural structures, and for biochemical differentiation of the tissue-specific enzyme, acetylcholinesterase (AChE). Large amounts of mesodermal and neural structures, and normal expression of AChE were found in isolates made as early as the 32-cell stage in both species. Only a small increase in the percentage of isolates developing mesoderm was detected when isolations were made at later cleavage or blastula stages. The amount of mesoderm formed did not depend on the stage of isolation. Mesoderm differentiation was usually limited to the notocord and muscle. The isolates rarely formed pronephros, mesothelium, or mesenchyme, derivatives of ventral mesoderm, during normal development. The results indicate that the marginal zone of the cleavage-stage embryo contains all of the information needed for the formation of the organizer. The formation of dorsal mesoderm does not require subsequent interaction with the cells of the vegetal hemisphere, although the presence of those cells is likely to play a role in normal pattern formation.  相似文献   

6.
We have injected XIHbox 6 mRNA together with the lineage tracer colloidal gold into individual dorso-anterior blastomeres of the 32-cell stage Xenopus embryo and analyzed their cell fate during embryogenesis. While the developing tadpoles appeared entirely normal, the fate of the progeny of the injected blastomere was altered. In the brain injected cells failed to differentiate terminally, as indicated by a loss of labeled cranial nerves. Differentiation of spinal nerves remained unaffected. Fate change in the CNS occurred at about the time of normal XIHbox 6 protein expression. In addition, progeny of injected blastomeres gained head epidermal fate and lost anterior notochord fate as a result of altered cell migrations during gastrulation. The results show that a homeodomain protein is capable of altering cell fate in a position-specific and cell-autonomous manner in Xenopus embryos. The experimental approach used here should be applicable to other molecules specifying cell fate.  相似文献   

7.
Single animal hemisphere blastomeres isolated from the eight-cell stage Xenopus embryos differentiate into mesoderm when treated with activin A, whereas when cultured without activin they form atypical epidermis. The mesoderm tissue induced by activin is different between dorsal and ventral blastomeres. In the present study, the duration and timing of activin treatment was varied, in order to identify the critical stage when animal blastomeres acquire competence to respond to activin A. It was shown that the critical time was 45 min after blastomere isolation, which corresponds approximately to NF stage 6 (32-cell stage) of normal development. The competence gradually increased during the morula stages.  相似文献   

8.
9.
In order to understand the role of the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) in germ line cells, an attempt was made to perturb the function of the protein with the anti-vasa antibody 2L-13. The 2L-13 or the control antibody was microinjected with a lineage tracer (FITC-dextran-lysine, FDL) into single vegetal blastomeres containing the germ plasm of Xenopus 32-cell embryos, the descendants of which were destined to differentiate into a small number of primordial germ cells (PGC) and a large number of somatic cells, mostly of endodermal tissues at the tadpole stage. No significant effect of the injection of the antibodies on FDL-labeled, presumptive PGC (pPGC) was observed in embryos until stage 37/38. However, FDL-labeled PGC were not observed in almost all the 2L-13 antibody-injected tadpoles, although a similar number of labeled somatic cells were always present. As 2L-13 antibody specifically reacts with XVLG1 protein in the embryos by immunoblotting, the present results suggest that the antibody perturbed the function of XVLG1 protein in the pPGC, resulting in failure of PGC differentiation at the tadpole stage.  相似文献   

10.
The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.  相似文献   

11.
12.
13.
W C Smith  R M Harland 《Cell》1991,67(4):753-765
Expression cloning from a pool of gastrula cDNAs identified the Wnt family member Xwnt-8 as having dorsal axis-inducing activity in Xenopus embryos. Microinjected Xwnt-8 mRNA was able to rescue the development of a dorsally complete anterior-posterior axis in embryos ventralized by exposure to UV light. Axis induction was observed in embryos injected in either marginal or vegetal blastomeres at the 32-cell stage. Vegetal blastomeres receiving Xwnt-8 mRNA contributed progeny not to the induced dorsal axis, but to the endoderm, a result consistent with Xwnt-8 causing cells to act as a Nieuwkoop center (the vegetal-inducing component of normal dorsal axis formation), rather than as a Spemann organizer (the induced dorsal marginal zone component that directly forms the dorsal mesoderm). Xwnt-8, which is normally expressed ventrally in midgastrula and neurula embryos, appears to mimic, when injected, maternally encoded dorsal mesoderm-inducing factors that act early in development.  相似文献   

14.
Cell lineages during development of ascidian embryos were analyzed by injecting horseradish peroxidase as a tracer enzyme into identified cells of the 16-cell and 32-cell stage embryos of Halocynthia roretzi. Most of the blastomeres of these embryos developed more kinds of tissues than have hitherto been reported, and therefore, the developmental fates of each blastomere are more complex. It has been thought that every blastomere of the 64-cell stage ascidian embryo gives rise to only one kind of tissues, but the finding that the several blastomeres at the 32-cell stage developed into at least three different kinds of tissues, clearly indicates that the stage at which the fates of every blastomere are determined to one tissue is later than the 64-cell stage. The results also clearly demonstrate that muscle cells are derived not only from B-line cells (B5.1, B5.2, B6.3, and B6.4) but also from A-line cells (A5.2 and A6.4) and b-line cells (b5.3 and b6.5). Based on the present analysis as well as other studies, complete cell lineages of muscle cells up to their terminal differentiation have been proposed. In addition, lineages of nervous system, notochord, and epidermis are also discussed.  相似文献   

15.
This paper describes a continuing effort to define the location and mode of action of morphogenetic determinants which direct the development of dorsal body axis structures in embryos of the frog Xenopus laevis. Earlier results demonstrated that presumptive endodermal cells in one vegetal quadrant of the 64-cell embryo can, under certain experimental conditions, induce partial or complete body axis formation by progeny of adjacent equatorial cells. (R.L. Gimlich and J.C. Gerhart, 1984, Dev. Biol. 104, 117-130). I have now assessed the importance of other blastomeres for embryonic axis formation in a series of transplantation experiments using cells from the equatorial level of the 32-cell embryo. The transplant recipients were embryos which had been irradiated with ultraviolet light before first cleavage. Without transplantation, embryos failed to develop the dorsal structures of the embryonic body axis. However, cells of these recipients were competent to respond to inductive signals from transplanted tissue and to participate in normal embryogenesis. Dorsal equatorial cells, but not their lateral or ventral counterparts, often caused partial or complete body axis development in irradiated recipients, and themselves formed much of the notochord and some prechordal and somitic mesoderm. These are the same structures that they would have formed in the normal donor. Thus, the dorsal equatorial blastomeres were often at least partially autonomous in developing according to their prospective fates. In addition, they induced progeny of neighboring host cells to contribute to the axial mesoderm and to form most of the central nervous system. The frequency with which such transplants caused complete axis formation in irradiated hosts increased when they were made at later and later cleavage stages. In contrast, the inductive activity of vegetal cells remained the same or declined during the cleavage period. These and other results suggest that the egg cytoplasmic region containing "axial determinants" is distributed to both endodermal and mesodermal precursors in the dorsal-most quadrant of the early blastula.  相似文献   

16.
Horseradish peroxidase (HRP) was used as an intracellular lineage tracer in two experiments designed to reveal the sites of origin of cells that formed the duplicate embryo which developed in relation to an organizer grafted in the ventral marginal zone (VMZ) of Xenopus laevis embryos. In the first experiment a dorsal blastoporal lip fully labeled with HRP was grafted in the VMZ of an unlabeled embryo at the beginning of gastrulation. This resulted in development of a second embryo in which labeled cells, of graft origin, formed the notochord, and parts of the somites, endoderm, and neural tube. The second experiment was designed to show the sites of origin of the host's cells that formed parts of the induced embryo. HRP was injected into individual blastomeres in a series of Xenopus embryos at the 32-cell stage and each embryo received an unlabeled organizer graft in the VMZ at the beginning of gastrulation. In these embryos the lineages that contributed to the host's primary neural tube did not contribute any cells to the induced neural tube. All the cells in the induced neural tube which originated from the host were descendants of ventral blastomeres that did not contribute to the neural tube normally. This shows that the second neural tube is formed as a result of the action of the organizer on cells in its immediate vicinity which would not normally have entered neural pathways of differentiation.  相似文献   

17.
Fates of the blastomeres of the 16-cell stage Xenopus embryo   总被引:6,自引:0,他引:6  
The fate of each of the blastomeres in the 16-cell stage Xenopus embryo which had been carefully selected for stereotypic cleavages was determined by intracellularly marking a single blastomere with horseradish peroxidase and identifying the labeled progeny in the tailbud embryo by histochemistry. Each blastomere populated all three primary germ layers. The progeny of each blastomere were distributed characteristically both in phenotype and in location. For example, most organs were populated by the descendants of particular sets of blastomeres. Furthermore, within an organ the progeny of a single blastomere were restricted to defined spatial addresses. This study describes the fates of identified 16-cell stage blastomeres and demonstrates that they are distinct and predictable if embryos are preselected for stereotypic cleavages.  相似文献   

18.
19.
In many animals the dorsalventral axis forms by an initial localization of maternal molecules, which then regulate the spatial location of signals that directly influence the expression of axis-specific fates. Several recent studies have demonstrated that dorsal-animal blastomeres of the Xenopus morula (8–32 cells) are biased toward dorsal fates prior to mesoderm inductive signaling In this study we ask whether the dorsal bias is the result of autonomous expression of maternal molecules specifically localized within dorsal cells or of early activating signals. It was found that although 16-cell dorsal-animal blastomeres (D1.1) can differentiate into dorsal tissues when cultured alone, the 8-cell mothers (D1) can not. Likewise, although RNA extracted from D1.1 can induce an extra dorsal axis when injected into vegetal blastomeres, RNA extracted from D1 can not. However, D1 does express dorsal tissues if co-cultured with dorsal-vegetal cells or with culture medium containing a mixture of activins (PIF-medium). Furthermore, short-term culture of D1 in PIF-medium enables the D1 RNA to induce an ectopic dorsal axis. Ven ral-animal blastomeres also can express dorsal axial tissues when co-cultured with dorsal-vegetal blastomeres or in PIF-medium, but the RNA from the activin-treated ventral cells cannot induce ectopic dorsal axes. These studies demonstrate that there are maternal RNAs that, shortly after fertilization are present only in the dorsalanimal region. They do not act cell autonomously, but require an activin-like signal. These RNAs may function by increasing the responsiveness of dorsal-animal blastomeres to the mesoderm inductive signals present in both the morula and the blastula. © Wiley-Liss, Inc.  相似文献   

20.
Brain formation in variously aged presumptive ectoderms of Cynops pyrrhogaster under the influence of the head organizer was examined by the sandwich method. The head organizer was obtained from the middle portion of the archenteron roof at the slit-blastopore stage. The presumptive ectoderm was taken from 0- to 36-hr exogastrulae. Exogastrulae were prepared from the earliest gastrulae just before invagination (0-hr embryos). The presumptive neural plate overlying the archenteron roof used as organizer was cultivated in an envelope of belly ectoderm from an early neurula.
The following results were obtained: 1) Brain induction was almost entirely restricted to explants covered with 6-hr ectoderm and its frequency was low. 2) The presumptive neural plate above the head organizer was almost completely determined as neural tissues. 3) The head organizer showed a tendency to differentiate into more endodermal and less mesodermal tissues than those expected from its prospective fate.
Brain induction in normal development and the relationship between neural tissue formation in variously aged presumptive ectoderms and the time necessary for neural induction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号