首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low density lipoprotein (LDL) from human plasma was digested with the specific endoprotease, kallikrein. Apolipoprotein B-100, the protein moiety of LDL, was cleaved by kallikrein into two fragments (K1 and K2) which we have compared to the naturally occurring fragments, B-74 and B-26. We have found that K1 and K2 precisely match B-74 and B-26 with respect to molecular weight, stoichiometry, and amino terminal amino acid sequence. These findings provide strong evidence that kallikrein is the agent responsible for the formation of B-74 and B-26 in human LDL.  相似文献   

2.
Using thrombin and trypsin as probes, we determined: first, that low-density lipoprotein (LDL) receptor binding determinants switch from apolipoprotein (apo) E to apo-B within the very-low-density lipoprotein (VLDL) Sf 20-60 region of the metabolic cascade from VLDL1 (Sf 100-400) of hypertriglyceridemic (HTG) human subjects to LDL. Second, two different conformations of apo-E exist in HTG-VLDL Sf greater than 60, one accessible (greater than or equal to 1 mol/mol of particle) and one inaccessible (1-2 mol/mol) to both thrombin and the LDL receptor; normal VLDL (Sf greater than 60) have only the inaccessible conformation and therefore do not bind to the LDL receptor. Third, thrombin degrades apo-B into large fragments, three of which have electrophoretic mobilities similar to B-48, B-74, and B-26; this, however, has no effect on apo-B-mediated receptor binding. Fibroblast studies showed that thrombin could abolish receptor uptake of HTG-VLDL1 and HTG-VLDL2 (Sf 60-100), had little or no effect on HTG-VLDL3 (Sf 20-60), and no effect on uptake of intermediate-density lipoprotein (IDL) or LDL. Trypsin abolished the binding of HTG-VLDL1 and HTG-VLDL2, reduced that of HTG-VLDL3, but had little to no effect on IDL or LDL binding. Immunochemical techniques revealed that thrombin cleaved some apo-E into the E-22 and E-12 fragments; after trypsin treatment no apo-E was detected in any HTG-lipoprotein. Normal VLDL subclasses contained less apo-E than the corresponding HTG-VLDL subclasses and it was not cleaved by thrombin. Apo-B immunoreactivities of VLDL subclasses were not significantly changed after treatment with thrombin, although thrombin cleaved some of the B-100 of each VLDL subclass, and all apo-B in IDL and LDL, into 4-6 major large fragments. Trypsin converted all of the apo-B of each lipoprotein into smaller fragments (Mr less than 100,000). We conclude that apo-E of the thrombin-accessible conformation mediates uptake of HTG-VLDL1 and HTG-VLDL2 but that apo-B alone is sufficient to mediate receptor binding of IDL and LDL; the switch from apo-E to apo-B as the primary or sufficient binding determinant occurs within the VLDL3 (Sf 20-60) region of the metabolic cascade, where receptor binding first appears in VLDL subclasses from normal subjects.  相似文献   

3.
The reactivity of a series of monoclonal antibodies directed against human low density lipoproteins (LDL) has been tested with hepatic and intestinal apolipoprotein B (apo-B) termed B-100 and B-48, respectively (Kane, J. P., Hardman, D. A., and Paulus, H. E. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 2465-2469). Whereas those antibodies that have been previously shown to recognize determinants close to the LDL receptor recognition site reacted only with B-100, two antibodies specific for other regions of apo-B reacted with both B-100 and B-48. Therefore, it is probable that sequence homologies exist between the two proteins and it must be considered that all or parts of the B-48 sequence may be contained within that of B-100. The specificity of the reaction of these antibodies with proteins designated B-74 and B-26 supports the concept that they represent complementary fragments of B-100. The present results have been incorporated in a theoretical map of the antigenic determinants recognized by these antibodies on the LDL apo-B.  相似文献   

4.
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual apolipoprotein (apo-) B,E(LDL) receptor. Ligand blots of Triton X-100 extracts of mouse peritoneal macrophages using 125I-beta-VLDL identified a single protein. This protein cross-reacted with antibodies against bovine apo-B,E(LDL) receptors, but its apparent Mr was approximately 5,000 less than that of the human apo-B,E(LDL) receptor. Binding studies at 4 degrees C demonstrated specific and saturable binding of low density lipoproteins (LDL), beta-VLDL, and cholesterol-induced high density lipoproteins in plasma that contain apo-E as their only protein constituent (apo-E HDLc) to mouse macrophages. Apolipoprotein E-containing lipoproteins (beta-VLDL and apo-E HDLc) bound to mouse macrophages and human fibroblasts with the same high affinity. However, LDL bound to mouse macrophages with an 18-fold lower affinity than to human fibroblasts. Mouse fibroblasts also bound LDL with a similar low affinity. Compared with the apo-B,E(LDL) receptors on human fibroblasts, the apo-B,E(LDL) receptors on mouse macrophages were resistant to down-regulation by incubation of the cells with LDL or beta-VLDL. There are three lines of evidence that an unusual apo-B,E(LDL) receptor on mouse peritoneal macrophages mediates the binding and uptake of beta-VLDL: LDL with residual apo-E removed displaced completely the 125I-beta-VLDL binding to mouse macrophages, preincubation of the mouse macrophages with apo-B,E(LDL) receptor antibody inhibited both the binding of beta-VLDL and LDL to the cells and the formation of beta-VLDL- and LDL-induced cholesteryl esters, and binding of 125I-beta-VLDL to the cells after down-regulation correlated directly with the amount of mouse macrophage apo-B,E(LDL) receptor as determined on immunoblots. This unusual receptor binds LDL poorly, but binds apo-E-containing lipoproteins with normal very high affinity and is resistant to down-regulation by extracellular cholesterol.  相似文献   

5.
To identify the domain of apolipoprotein E (apo-E) involved in binding to low density lipoprotein (LDL) receptors on cultured human fibroblasts, apo-E was cleaved and the fragments were tested for receptor binding activity. Two large thrombolytic peptides (residues 1-191 and 216-299) of normal apo-E3 were combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) and tested for their ability to compete with 125I-LDL for binding to the LDL (apo-B,E) receptors on human fibroblasts. The NH2-terminal two-thirds (residues 1-191) of apo-E3 was as active as intact apo-E3 . DMPC, while the smaller peptide (residues 216-299) was devoid of receptor-binding activity. When apo-E3 was digested with cyanogen bromide (CNBr) and the four largest CNBr fragments were combined with DMPC and tested, only one fragment competed with 125I-LDL for binding to cultured human fibroblasts (CNBr II, residues 126-218). This fragment possessed binding activity similar to that of human LDL. The 125I-labeled CNBr II . DMPC complex also demonstrated high affinity, calcium-dependent saturable binding to solubilized bovine adrenal membranes. The binding of CNBr II . DMPC was inhibited by 1,2-cyclohexanedione modification of arginyl residues or diketene modification of lysyl residues. In addition, the CNBr II had to be combined with DMPC before it demonstrated any receptor-binding activity. Pronase treatment of the membranes abolished the ability of this fragment to bind to the apo-B,E receptors. This same basic region in the center of the molecule has been implicated as the apo-B,E receptor-binding domain not only by this study but also by other studies showing that 1) natural mutants of apo-E that display defective binding have single amino acid substitutions at residues 145, 146, or 158; and 2) the apo-E epitope of the monoclonal antibody 1D7, which inhibits apo-E binding, is centered around residues 139-146.  相似文献   

6.
Apolipoprotein (apo) B-100, the protein constituent of low density lipoproteins (LDL), is the determinant responsible for LDL binding to the apoB,E(LDL) receptor on cells. The current study was designed to identify the region(s) of apoB-100 that interact with the apoB,E(LDL) receptor. Apolipoprotein B-100 was fragmented by thrombin digestion, and the isolated fragments (T2, T3, T4) were recombined with cholesterol-induced canine high density lipoproteins (HDLc). Before the recombination, the receptor binding activity of apoE of the HDLc was abolished by reductive methylation and extensive trypsin treatment. This treatment permitted almost complete replacement of the small residual apoE fragments by the large apoB fragments. Recombinant apoB particles were isolated by ultracentrifugation and tested for binding to receptors on cultured human fibroblasts. The recombinant particles had chemical and physical properties similar to those of native HDLc. Recombinants of both the whole thrombolytic digest and of isolated fragments displayed specific binding to the apoB,E (LDL) receptor. Anti-apoB,E(LDL) receptor antibodies abolished 90% of the binding, and there was almost no specific binding to receptor-negative fibroblasts or to cells in which the receptors had been down-regulated. The binding of apoB-100 recombinants to the receptor also demonstrated calcium dependency; in addition, the surface binding of the recombinants was released by polyanionic compounds. All these recombinants had binding affinities comparable to one another but less than that of native LDL. Although T2, T3 and T4 recombinants can all bind specifically to the apoB,E(LDL) receptor, it remains to be established whether their activity represents physiologically relevant binding. Nevertheless, the present findings illustrate the potential of the recombinant method using HDLc lipids to reconstitute biological activity.  相似文献   

7.
The formation of large cholesterol-enriched high density lipoproteins (HDL1/HDLc) from typical HDL3 requires lecithin:cholesterol acyltransferase activity, additional cholesterol, and a source of apolipoprotein (apo-) E. The present study explores the role of apo-E in promoting HDL1/HDLc formation and in imparting to these lipoprotein particles the ability to interact with the apo-B,E(low density lipoprotein (LDL] receptor. Incubation of normal canine serum with cholesterol-loaded mouse peritoneal macrophages resulted in the formation of HDL1/HDLc that competed with 125I-LDL for binding to the apo-B,E(LDL) receptors on cultured human fibroblasts. Cholesterol efflux from macrophages was necessary because incubation of normal canine serum with nonloaded macrophages did not cause HDL1/HDLc formation. However, cholesterol delivery to the serum was not sufficient to result in HDL1/HDLc formation. Apolipoprotein E had to be available. Incubation of apo-E-depleted canine serum with cholesterol-loaded J774 cells, a macrophage cell line that does not synthesize apo-E, demonstrated that no HDL1/HDLc formation was detected even in the presence of significant cholesterol efflux. However, addition of exogenous apo-E to the serum during the incubation with cholesterol-loaded J744 cells promoted the formation of large receptor-active HDL1/HDLc. The receptor binding activity of these particles produced in vitro correlated with the amount of apo-E incorporated into the HDL1/HDLc. Apolipoproteins A-I and C-III were ineffective in promoting HDL1/HDLc formation; thus, apo-E was unique in allowing HDL1/HDLc formation. These results demonstrate that when lecithin:cholesterol acyltransferase activity, cholesterol, and apo-E are present in serum, typical HDL can be transformed in vitro into large cholesterol-rich HDL1/HDLc that are capable of binding to lipoprotein receptors.  相似文献   

8.
Human plasma low density lipoproteins (LDL) contain one major apoprotein of apparent Mr = 550,000 designated apolipoprotein B-100 (apo-B-100) and in some LDL preparations, minor components termed apo-B-74 (Mr = 410,000) and apo-B-26 (Mr = 145,000). The structural and metabolic relationships among these LDL apoproteins remain obscure. In the present study, we show that the mixing of proteolytic inhibitors with blood at the moment of collection prevents the appearance of apo-B-74 and -26 in plasma LDL indicating that these peptides are derived by proteolytic degradation of apo-B-100. In order to simulate the degradation in vitro, LDL were digested with plasmin, trypsin, chymotrypsin, thrombin, and tissue and plasma kallikreins and the degradation products analyzed by polyacrylamide gradient gel electrophoresis. While plasmin, trypsin, and chymotrypsin caused extensive degradation of apo-B-100, thrombin, and tissue and plasma kallikreins generated limited cleavage patterns. LDL digested with thrombin contained stoichiometric amounts of two peptides with apparent Mr = 385,000 and 170,000. Mixing experiments showed that the thrombin-derived peptides of apo-B-100 did not co-migrate with apo-B-74 and B-26 during electrophoresis indicating that these peptides were different. In contrast, LDL digested with kallikrein contained stoichiometric amounts of two peptides with apparent molecular weights identical to apo-B-74 and -26. Together, the above results indicate that apo-B-74 and -26 are degradation products of apo-B-100 and are not produced by the action of thrombin. Whether the expression of a kallikrein-like activity in vivo accounts for the specific degradation of LDL B-100 to yield LDL B-74 and -26 remains to be determined.  相似文献   

9.
In 1979, Steinberg and colleagues described a unique kindred with familial hypobetalipoproteinemia (Steinberg, D., Grundy, S. M., Mok, H. Y. I., Turner, J. D., Weinstein, D. B., Brown, W. V., and Albers, J. J. (1979) J. Clin. Invest. 64, 292-301). Recently, we demonstrated the existence of an abnormal species of apolipoprotein (apo-) B, apo-B37 (Mr = 203,000) in nine members of that kindred (Young, S. G., Bertics, S. J., Curtiss, L. K., and Witztum, J. L. (1987) J. Clin. Invest. 79, 1831-1841; Young, S. G., Bertics, S. J., Curtiss, L. K., Dubois, B. W., and Witztum, J. L. (1987) J. Clin. Invest. 79, 1842-1851). Apolipoprotein B37 contains only the amino-terminal portion of apo-B100. In affected individuals most of the apo-B37 is contained in the high density lipoprotein (HDL) fraction (d = 1.063-1.21 g/ml), where it is the principal apolipoprotein in a unique lipoprotein (Lp) particle, Lp-B37, which contains little, if any, apo-A-I. However, the most abundant lipoprotein in the HDL density fraction is a smaller particle, which contains apo-A-I, but no apo-B. The Lp-B37 particles were isolated from the HDL of affected individuals by immunoabsorption of apo-B37. Selected affinity antibodies specific for apo-B37 were used to prepare an anti-apo-B37-Sepharose 4B column. Lipoproteins not bound by the column (unbound HDL fraction) contained apo-A-I, but no apo-B. The Lp-B37, which was eluted from the column with 3 M KI, contained apo-B37 and trace amounts of apo-A-I, but no apo-B100. Over a 4-h period, normal human fibroblasts degraded 10-fold more 125I-low density lipoprotein (LDL) than 125I-Lp-B37. Also, whereas addition of excess unlabeled LDL markedly reduced degradation of 125I-LDL, it did not significantly reduce the degradation of 125I-Lp-B37. Unlabeled Lp-B37 did not inhibit uptake and degradation of 125I-LDL by fibroblasts. These data suggest that the amino-terminal portion of apo-B100, when expressed on a naturally occurring lipoprotein particle, does not contain a functional apo-B,E(LDL) receptor binding domain.  相似文献   

10.
An electron spin probe study was made of the effect of lipid peroxidation (LPO) on the structure of surface proteolipid layer of human serum low-density lipoproteins (LDL). The results obtained with a positively charged spin label and stearic acid spin probes with doxyl labels at positions 5, 12, and 16 revealed that LPO caused a decrease in phospholipid molecule mobility both in the region of polar heads and in the region of acyl chains till the depth of at least 1.7 mm from water-lipid interface. Under relatively high levels of oxidation (more than 6 mumol MDA/g LDL phospholipid) the polarity of lipid phase increased. The decrease in efficiency of tryptophan fluorescence quenching by nitroxide fragments incorporated in hydrophobic regions at the depth of approximately 2 nm from water-lipid interface indicated that lipid-protein interaction was disturbed as a result of oxidation of LDL lipids. In addition, the LPO-induced modification of apo-B, the main protein of LDL, was examined with maleimide spin label. LPO led to increase in mobility of strongly immobilized maleimide labels and in the number of weakly immobilized ones. Oxidized LDL revealed decreased ability to incorporate spin-labeled steroid (androstane) as compared to native ones. LPO-induced structural changes of LDL surface are supposed to be a reason of enhanced accumulation of cholesterol in human monocytes during their incubation with oxidized LDL. The cholesterol content in red cells was shown to be directly correlated to MDA content in apo-B containing lipoproteins but not in whole serum. Our findings suggest that free radical modification of serum lipoproteins but not solely an increased level of LPO products in blood is one important cause for cholesterol accumulation in cells and, apparently, for their transformation into foam cells during atherosclerosis.  相似文献   

11.
Distribution of lipid-binding regions in human apolipoprotein B-100   总被引:3,自引:0,他引:3  
The distribution of lipid-binding regions of human apolipoprotein B-100 has been investigated by recombining proteolytic fragments of B-100 with lipids and characterizing the lipid-bound fragments by peptide mapping, amino acid sequencing, and immunoblotting. Fragments of B-100 were generated by digestion of low-density lipoproteins (LDL) in the presence of sodium decyl sulfate with either Staphylococcus aureus V8 protease, pancreatic elastase, or chymotrypsin. Particles with electron microscopic appearance of native lipoproteins formed spontaneously when detergent was removed by dialysis from enzyme digests containing fragments of B-100 and endogenous lipids, or from incubation mixtures of delipidated B-100 fragments mixed with microemulsions of exogenous lipids (cholesteryl oleate and egg phosphatidylcholine). Fractionation of the recombinant particles by isopycnic or density gradient ultracentrifugation yielded complexes similar to native LDL with respect to shape, diameter, electrophoretic mobility, and surface and core compositions. Circular dichroic spectra of these particles showed helicity similar to LDL but a somewhat decreased content of beta-structure. Most of the fragments of B-100 were capable of binding to lipids; 12 were identified by direct sequence analysis and 14 by reaction with antisera against specific sequences within B-100. Our results indicate that lipid-binding regions of B-100 are widely distributed within the protein molecule and that proteolytic fragments derived from B-100 can reassociate in vitro with lipids to form LDL-like particles.  相似文献   

12.
We have previously shown that the liver and steroidogenic tissues of rats in vivo and a wider range of cells in vitro, including human cells, selectively take up high density lipoprotein (HDL) cholesteryl esters without parallel uptake of HDL particles. This process is regulated in tissues of rats and in cultured rat cells according to their cholesterol status. In the present study, we examined regulation of HDL selective uptake in cultured human fibroblasts and Hep G2 hepatoma cells. The cholesterol content of these cells was modified by a 20-hr incubation with either low density lipoprotein (LDL) or free cholesterol. Uptake of HDL components was examined in a subsequent 4-6-hr assay using intracellularly trapped tracers: 125I-labeled N-methyl-tyramine-cellobiose-apoA-I (125I-NMTC-apoA-I) to trace apoA-I, and [3H]cholesteryl oleyl ether to trace cholesteryl esters. In the case of fibroblasts, pretreatment with either LDL or free cholesterol resulted in decreased selective uptake (total [3H]cholesteryl ether uptake minus that due to particle uptake as measured by 125I-NMTC-apoA-I). In contrast, HDL particle uptake increased with either form of cholesterol loading. The amount of HDL that was reversibly cell-associated (bound) was increased by prior exposure to free cholesterol, but was decreased by prior exposure to LDL. In the case of Hep G2 cells, exposure to free cholesterol only slightly increased HDL particle uptake; selective uptake decreased after both forms of cholesterol loading, and reversibly bound HDL increased after exposure to free cholesterol, but either did not change or decreased after exposure to LDL. It was excluded that either LDL carried over into the HDL uptake assay or that products secreted by the cultured cells influenced these results. Thus, selective uptake by cells of both hepatic and extrahepatic origin was down-regulated by cholesterol loading, under which conditions HDL particle uptake increased. Total HDL binding was not directly correlated with either the rate of selective uptake or the rate of HDL particle uptake or the cholesterol status of the cells, suggesting more than one type of HDL binding site.  相似文献   

13.
A total of 16 hybrid myeloma clones secreting monoclonal antibodies (McAb) to rabbit or human serum low-density lipoprotein (LDL) were derived from the fusion of spleen cells from LOU or DA rats immunized with rabbit or human LDL and the rat myeloma lines Y3 Ag1.2.3 or YB2/0. Anti-(rabbit LDL) McAb showed limited reactivity with LDL from human, rhesus-monkey, rat and mouse serum. Six out of seven anti-(human LDL) McAb reacted with rhesus-monkey LDL, and only one showed partial cross-reaction with rabbit LDL. Binding-competition experiments indicated that the epitopes recognized by the anti-(rabbit LDL) IgG could be grouped into two major clusters: McAb in the first cluster reacted either with apo-(lipoprotein B-100) (apoB-100) and apo-(lipoprotein B-74) (apoB-74) or with apoB-100 but not with apo-(lipoprotein B-48) (apoB-48), the lower-Mr form of apoB of intestinal origin; the McAb in the second cluster all reacted with apoB-48 in addition to apoB-100 or apoB-100 and apoB-74. The six anti-(human LDL) IgG bound to separate epitopes on LDL. Further data on the epitope specificity of these McAb were obtained by antibody blotting after partial proteolysis of apoB-100 with trypsin or staphylococcal V8 proteinase, and the data confirmed the results obtained with the binding-competition experiments. One McAb to rabbit LDL inhibited the binding of LDL to the fibroblast LDL receptor (50% inhibition at a McAb/LDL molar ratio of 10). A similar result was produced by two other McAb at higher concentrations of antibody.  相似文献   

14.
Using human and rabbit hepatocyte cultures, the effects of khellin and timefurone on lipoprotein metabolism were studied with special reference to the following parameters: i) binding and degradation of 125I-labeled low density lipoproteins (LDL); ii) apoprotein B (apo-B) secretion measured by immunoenzymatic assay, iii) [35S]methionine labeled apo-B and apo-E within the composition of very low density lipoproteins (VLDL); iiii) total cholesterol synthesis and cholesterol secretion within the composition of VLDL. The therapeutic concentrations (0.1-10 micrograms/ml) of the above drugs had no appreciable effect on the binding and degradation of 125I-LDL but inhibited the secretion of apo-B VLDL, leaving the apo-E VLDL unaffected. This was paralleled with inhibition of cholesterol synthesis (by 30-50%) and VLDL secretion. These results suggest that khellin and timefurone mediate the hypolipidemic effect via the reduction of the intracellular synthesis of cholesterol and secretion of apo-B containing VLDL by hepatocytes.  相似文献   

15.
The ability of apolipoprotein (apo-) B48 to interact with lipoprotein receptors was investigated using three different types of lipoproteins. First, canine chylomicron remnants, which contained apo-B48 as their primary apoprotein constituent, were generated by the hydrolysis of chylomicrons with milk lipoprotein lipase. These apo-B48-containing chylomicron remnants are deficient in apo-E and reacted very poorly with apo-E receptors on adult dog liver membranes and the low density lipoprotein (apo-B,E) receptors on human fibroblasts. Addition of normal human apo-E3 restored the receptor binding activity of these lipoproteins. Second, beta-very low density lipoproteins (beta-VLDL) from cholesterol-fed dogs were subfractionated into distinct classes containing apo-E along with either apo-B48 or apo-B100. Both classes bound to the apo-B,E and apo-E receptors. Their binding was almost completely mediated by apo-E, as evidenced by the ability of the anti-apo-E to inhibit the receptor interaction. Third, beta-VLDL from type III hyperlipoproteinemic patients were subfractionated by immunoaffinity chromatography into lipoproteins containing apo-E plus either apo-B48 or apo-B100. Both subfractions bound poorly to apo-B,E and apo-E receptors due to the presence of defective apo-E2. However, the residual binding of the apo-B48-containing and apo-B100-containing human beta-VLDL was inhibited by the anti-apo-E. After lipase hydrolysis, apo-B100 became a more prominant determinant responsible for mediating receptor binding to the apo-B,E receptor. By contrast, lipase hydrolysis did not increase the binding activity of the apo-B48-containing beta-VLDL. These results indicate that apo-B48 does not play a direct role in mediating the interaction of lipoproteins with receptors on fibroblasts or liver membranes.  相似文献   

16.
The structure of apolipoprotein B and its stoichiometry on plasma lipoproteins has been a major issue and one refractory to a variety of analyses. Immunochemical analyses represent an independent approach. Examinations of apolipoprotein B (apo-B) epitopes on human plasma low density lipoproteins (LDL) using monoclonal antibodies have consistently revealed the existence of extensive apo-B heterogeneity. In the present study, we have addressed the solution of the stoichiometry problem using quantitative analysis of the maximum number of identical antibodies that can be bound per LDL particle in which we take into account this ligand heterogeneity. We have estimated the molecular weight of apo-B by quantifying the number of times a given apo-B epitope is expressed on the surface of LDL. The quantitative binding of eight previously characterized monoclonal antibodies was measured in a fluid phase radioimmunoassay. The results were analyzed by Scatchard analysis and expressed on the basis of independent measurements of the maximum amount of LDL that could be bound by each antibody. Affinity constants for each of the eight antibodies varied between 8.5 X 10(7) and 80 X 10(7) M-1. For these same antibodies, the concentration of maximally bound antibody at a normalized LDL concentration of 1000 ng/ml was estimated to be 0.9-1.8 nM with a mean of 1.23 nM. Adopting a molecular mass from physicochemical analysis for LDL apo-B of 550,000 daltons, the molar ratio between bound antibody and LDL varied between 0.5 and 1.2 (mean 0.75 +/- 0.15). The results supported the hypothesis that apo-B is present as a single large molecular weight polypeptide in LDL.  相似文献   

17.
A family of rhesus monkeys comprising a sire, a dam, and four male offspring were fed a cholesterol-free Purina Chow diet for several months. The sire, 431-J, and two of the offspring, B-8204 and B-8806, had persistent plasma cholesterol levels in the range of 100-130 mg/dl, whereas the dam, 766-I, and the two other offspring, B-1000 and B-7643, exhibited a marked hypercholesterolemia in the 250-300 mg/dl range associated with an elevation of plasma LDL and apoB. When fed for 12 weeks a diet containing 12.5% lard and 0.25% cholesterol, sire, dam, B-1000 and B-7643 exhibited a marked hypercholesterolemia (500-800 mg/dl range), whereas B-8204 and B-8806 developed only a modest hypercholesterolemia (200-250 mg/dl). All animals were Lp[a]+. Skin fibroblasts from each animal and from control cells were grown in 10% fetal calf serum, transferred to 10% lipoprotein-deficient serum for 48 hr, and then incubated at 4 degrees C or 37 degrees C with 125I-labeled Lp[a]-free LDL. The fibroblasts from dam and offspring B-1000 and B-7643 bound and internalized 125I-labeled LDL less efficiently than control cells. Mathematical analyses of the 4 degrees C binding data indicated that there were no significant differences in LDL binding affinity between test and control cells suggesting that cells from the animals with a spontaneous hypercholesterolemia had a decreased number of LDL receptors. This conclusion was supported by the results of ligand and immunoblot analyses carried out on cell lysates separated by gradient gel electrophoresis. We conclude that a genetically determined LDL receptor deficiency was responsible, in part, for the spontaneous hypercholesterolemia observed in three out of the six family members and that this deficiency accounted for the hyperresponsiveness to a dietary fat and cholesterol challenge by the dam and the two offspring, B-1000 and B-7643. The hyperresponsiveness noted in the sire that had no evidence for LDL-receptor deficiency illustrates that factors other than the LDL receptor were responsible for the hypercholesterolemia attending the fat challenge.  相似文献   

18.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

19.
Previous results have demonstrated that liver membranes possess two distinct lipoprotein receptors: a low density lipoprotein (LDL) receptor that binds lipoproteins containing either apolipoprotein (apo-) B or apo-E, and an apo-E-specific receptor that binds apo-E-containing lipoproteins, but not the apo-B-containing LDL. This study reports the isolation and purification of apo-B,E(LDL) and apo-E receptors from canine and human liver membranes. The receptors were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate and were partially purified by DEAE-cellulose chromatography. The apo-B,E(LDL) receptor was isolated by affinity chromatography on LDL-Sepharose. The apo-E receptor, which did not bind to the LDL-Sepharose column, was then purified by using an HDLc (cholesterol-induced high density lipoprotein)-Sepharose affinity column and an immunoaffinity column. Characterization of the receptors revealed that the hepatic apo-B,E(LDL) receptor is similar to the extrahepatic LDL receptor with an apparent Mr = 130,000 on non-reducing sodium dodecyl sulfate-polyacrylamide gels. The apo-E receptor was found to be distinct from the apo-B,E(LDL) receptor, with an apparent Mr = 56,000. The purified apo-E receptor displayed Ca2+-dependent binding to apo-E-containing lipoproteins and did not bind to LDL or chemically modified apo-E HDLc. Antibodies raised against the apo-B,E(LDL) receptor cross-reacted with the apo-E receptor. However, an antibody prepared against the apo-E receptor did not react with the apo-B,E(LDL) receptor. The apo-E receptor also differed from the apo-B,E(LDL) receptor in amino acid composition, indicating that the apo-E receptor and the apo-B,E(LDL) receptor are two distinct proteins. Immunoblot characterization with anti-apo-E receptor immunoglobulin G indicated that the apo-E receptor is present in the hepatic membranes of man, dogs, rats, and mice and is localized to the rat liver parenchymal cells.  相似文献   

20.
Apolipoprotein (apo-) E2 and beta-migrating very low density lipoproteins (beta-VLDL) (which were isolated from type III hyperlipoproteinemic subjects) both demonstrated defective binding to apo-E and apo-B,E receptors on dog liver membranes and to apo-B,E low density lipoproteins (LDL) receptors on fibroblasts. The defective binding activity of the apo-E2 and beta-VLDL varied from very poor to nearly normal. The ability of the beta-VLDL to interact with hepatic apo-E receptors was enhanced by the addition of normal apo-E3 to the beta-VLDL. Furthermore, cysteamine treatment of the apo-E2 in beta-VLDL enhanced binding of the beta-VLDL to both apo-E and apo-B,E receptors. The importance of apo-E in mediating the receptor binding of beta-VLDL to these receptors was confirmed by using monoclonal antibodies. The residual binding activity of beta-VLDL to apo-E and apo-B,E receptors was inhibited by greater than 90% with anti-apo-E, while the addition of anti-apo-B had little effect. The apo-B in the beta-VLDL was capable of binding to apo-B,E receptors after the hydrolysis of the beta-VLDL triglycerides with milk lipoprotein lipase. Lipase treatment yielded, two subfractions of beta-VLDL. One fraction (d = 1.02 to 1.03 g/ml) was enriched with apo-B100; the other fraction (d less than 1.006 g/ml) was enriched with apo-B48 and apo-E2. Significantly increased amounts of the apo-B100-enriched fraction bound to apo-B,E receptors. Inhibition of this binding caused by the addition of anti-apo-B indicated that the binding activity of this subfraction was mediated by apo-B100. The apo-B48-enriched fraction did not show a significant increase in receptor binding, suggesting that apo-B48 does not bind to these receptors. In a control experiment, it was shown that triglyceride-rich VLDL, which contain normal apo-E3 and apo-B100, bind significantly to both liver apo-E receptors and fibroblast apo-B,E receptors. This binding activity was inhibited by greater than 90% with anti-apo-E. Lipase hydrolysis of the VLDL did not further enhance their receptor-binding activity. These results demonstrate that apo-E, and not apo-B, is the major determinant mediating the receptor-binding activity of cholesterol-rich beta-VLDL and triglyceride-rich VLDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号