首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Five intramolecularly quenched fluorogenic substrates for arginyl hydrolases with the sequence Abz-Phe-Arg-X-Y-EDDnp (X = Arg or Ser; Y = Val, Pro, or Arg) were synthesized by classical solution methods. Kinetics of their hydrolysis by tissue and plasma kallikreins, trypsin, and thrombin characterized Abz-Phe-Arg-Ser-Arg-EDDnp as a specific and sensitive substrate for the continuous assay of tissue kallikreins while Abz-Phe-Arg-Arg-Pro-EDDnp was the best substrate for human plasma kallikrein. The five peptides were poor substrates for trypsin and resistant to thrombin.  相似文献   

2.
Two trypsin inhibitors (TI-1, TI-2) were isolated from guinea pig plasma and purified to homogeneity. In amino-acid composition as well as molecular masses, TI-1 (Mr 58,000) and TI-2 (Mr 57,000) are similar to each other and to human and mouse alpha 1-proteinase inhibitors, and mouse con-trapsin. The two inhibitors form equimolar complexes with proteinases. The effectiveness of the inhibitors was characterized by association rate constants under second-order rate conditions. The inhibitory action of TI-1 was rapid for bovine trypsin, porcine pancreatic elastase and guinea pig plasma kallikrein, but slow for bovine thrombin and guinea pig plasmin and not detectable for bovine chymotrypsin and porcine pancreatic kallikrein. The inhibitory action of TI-2 was rapid for trypsin and chymotrypsin, but slow for guinea pig plasma kallikrein and not detectable for other proteinases. These results show that TI-1 and TI-2 are physicochemically similar but functionally distinct from each other and from human alpha 1-proteinase inhibitor that inhibits trypsin, chymotrypsin and elastase.  相似文献   

3.
Low density lipoprotein (LDL) from human plasma was digested with the specific endoprotease, kallikrein. Apolipoprotein B-100, the protein moiety of LDL, was cleaved by kallikrein into two fragments (K1 and K2) which we have compared to the naturally occurring fragments, B-74 and B-26. We have found that K1 and K2 precisely match B-74 and B-26 with respect to molecular weight, stoichiometry, and amino terminal amino acid sequence. These findings provide strong evidence that kallikrein is the agent responsible for the formation of B-74 and B-26 in human LDL.  相似文献   

4.
The assumption that a different conformational form was induced in the nuclear estrogen receptor following binding by antiestrogens compared to estrogens was studied by analysing the proteolytic fragments of the receptor following limited digestion with chymotrypsin and trypsin. Nuclei were isolated from MCF-7 cells previously exposed to [3H] 4-OHTAM. The proteolytic digestion was performed either on the micrococcal nuclease hydrolysate or on intact nuclei. The molecular weights (Mr) were calculated from the sedimentation coefficients (S) determined on a sucrose gradient and from the Stokes radii (Rs) estimated by gel filtration. Digestion of the nuclei with micrococcal nuclease solubilized a receptor form of Mr = 155,000. This receptor form was degraded by chymotrypsin to a receptor of Mr = 63,000 which could not be further dissociated by 0.4 M KCl and 3 M urea. A similar receptor molecule was released by chymotrypsin from intact nuclei. Digestion of the micrococcal nuclease hydrolysate with trypsin degraded the receptor to a form of a Mr = 67,000 which could not be further dissociated by 0.4 M KCl and 3 M urea. Digestion of intact nuclei with trypsin followed by micrococcal nuclease, solubilized a receptor form of Mr = 80,000 which could be further dissociated with 0.4 M KCl and 3 M urea to a receptor form of Mr = 67,000. This trypsin degraded receptor form seems to be similar in Mr to the chymotrypsin degraded form. On the other hand different receptor fragments of Mr = 33,000 and Mr = 60,000 were excised by chymotrypsin and trypsin respectively from the estradiol ligated estrogen receptor. (Geier et al., J. steroid Biochem. 26 [1987] 35-40.) These results support the assumption of a different conformational form for the antiestrogen ligated receptor, compared to the estrogen ligated receptor since they were differentially susceptible to proteolytic degradation by chymotrypsin.  相似文献   

5.
The structural relationship between apolipoprotein B-100 (apo-B-100) and apolipoprotein B-48 (apo-B-48) has not been elucidated. A peptide fragment (MDB-18) of approximately 6 kDa was isolated from a tryptic digest of apo-B-100. The sequence of the first 22 amino acids of MDB-18 was determined by Edman degradation. A 15-residue peptide corresponding to this sequence was synthesized by the solid-phase method and was utilized to develop a sequence-specific polyclonal antibody. On immunoblot analysis, the antibody recognized both intact apo-B-100 and apo-B-48. In addition, preincubating the antibody with the synthetic peptide abolished the recognition of both apo-B-100 and apo-B-48. These data are interpreted as indicating that there is an amino acid sequence homology between apo-B-100 and apo-B-48. Since the MDB-18 peptide is located in the carboxyl region of the B-100 molecule, we propose apo-B-100 and apo-B-48 share a common carboxyl region sequence.  相似文献   

6.
Using thrombin and trypsin as probes, we determined: first, that low-density lipoprotein (LDL) receptor binding determinants switch from apolipoprotein (apo) E to apo-B within the very-low-density lipoprotein (VLDL) Sf 20-60 region of the metabolic cascade from VLDL1 (Sf 100-400) of hypertriglyceridemic (HTG) human subjects to LDL. Second, two different conformations of apo-E exist in HTG-VLDL Sf greater than 60, one accessible (greater than or equal to 1 mol/mol of particle) and one inaccessible (1-2 mol/mol) to both thrombin and the LDL receptor; normal VLDL (Sf greater than 60) have only the inaccessible conformation and therefore do not bind to the LDL receptor. Third, thrombin degrades apo-B into large fragments, three of which have electrophoretic mobilities similar to B-48, B-74, and B-26; this, however, has no effect on apo-B-mediated receptor binding. Fibroblast studies showed that thrombin could abolish receptor uptake of HTG-VLDL1 and HTG-VLDL2 (Sf 60-100), had little or no effect on HTG-VLDL3 (Sf 20-60), and no effect on uptake of intermediate-density lipoprotein (IDL) or LDL. Trypsin abolished the binding of HTG-VLDL1 and HTG-VLDL2, reduced that of HTG-VLDL3, but had little to no effect on IDL or LDL binding. Immunochemical techniques revealed that thrombin cleaved some apo-E into the E-22 and E-12 fragments; after trypsin treatment no apo-E was detected in any HTG-lipoprotein. Normal VLDL subclasses contained less apo-E than the corresponding HTG-VLDL subclasses and it was not cleaved by thrombin. Apo-B immunoreactivities of VLDL subclasses were not significantly changed after treatment with thrombin, although thrombin cleaved some of the B-100 of each VLDL subclass, and all apo-B in IDL and LDL, into 4-6 major large fragments. Trypsin converted all of the apo-B of each lipoprotein into smaller fragments (Mr less than 100,000). We conclude that apo-E of the thrombin-accessible conformation mediates uptake of HTG-VLDL1 and HTG-VLDL2 but that apo-B alone is sufficient to mediate receptor binding of IDL and LDL; the switch from apo-E to apo-B as the primary or sufficient binding determinant occurs within the VLDL3 (Sf 20-60) region of the metabolic cascade, where receptor binding first appears in VLDL subclasses from normal subjects.  相似文献   

7.
Human plasma low density lipoprotein (LDL), which binds 0.2% of plasma T4, was shown to interact with the hormone through its protein moiety, apolipoprotein B-100. LDL and LDL2, the major subfraction of LDL, were found to have 3 equivalent binding sites for T4 with Ka = 2.5 x 10(6) M-1. Photoaffinity labeling of LDL with inner ring-labeled [125I]T4, followed by SDS-PAGE or agarose-SDS-PAGE of the labeled products, revealed that apoB-100 and its proteolytic cleavage products, apoB-74 and apoB-26, bound [125I]T4. In the presence of 1 or 10 microM T4, labeling was decreased in 7 separate experiments by 40-53% or 65-86%, respectively, consistent with a Ka of approximately 10(6) M-1. Binding of T4 to apoB-100 associated with VLDL was also demonstrated by photoaffinity labeling. The observed thyroid hormone binding property of lipid-complexed apoB-100 and the knowledge that receptors for the apolipoprotein exist in various tissues suggest a possible physiological role in thyroid hormone transport.  相似文献   

8.
Kallikrein digestion of human low density lipoproteins (LDL) has recently been shown to result in the degradation of apolipoprotein B (apo-B) into four major fragments, two of them being B-26 and B-74, which have been reported to be present in the LDL of some individuals. We studied the binding of kallikrein-treated LDL to human fibroblasts; digestion did not affect binding. Digested LDL was not taken up by macrophages, showing that it behaved like normal LDL. The activation of acyl-CoA cholesterol acyltransferase by LDL in fibroblasts was also not altered by kallikrein digestion. When delipidated LDL was treated with kallikrein, apo-B was digested into very small fragments, indicating that kallikrein can cleave apo-B at sites other than those which result in the formation of B-26 and B-74. The partial delipidation of LDL with heptane also resulted in more extensive digestion of apo-B, although binding to cells was unaffected. These studies suggest that the cholesterol core maintains the proper orientation of apo-B in the LDL particle and that kallikrein may be used as a tool to elucidate the association of apo-B and lipids in the LDL particle.  相似文献   

9.
The inhibition of plasmin, (EC 3.4.21.7), thrombin (EC 3.4.21.5), trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) by antiplasmin, the recently described fast-reacting plasmin inhibitor of human plasma, was studied. To determine the quantitative importance of antiplasmin relative to the other plasma protease inhibitors, enzyme inhibition assays were performed on whole plasma and on plasma specifically depleted in antiplasmin, after addition of excess enzyme. Plasmin was the only enzyme for which the inhibitory capacity of antiplasmin-depleted plasma was lower than that of normal plasma. To determine the affinity of the enzymes for antiplasmin, as compared to the other inhibitors, various amounts of enzymes were added to normal plasma and the formation of enzyme-antiplasmin complexes studied by crossed immunoelectrophoresis using specific antisera against antiplasmin. Plasmin and trypsin, but not thrombin or chymotrypsin formed complexes with antiplasmin. It is concluded that antiplasmin is the only fast-reacting plasmin inhibitor of human plasma. It is also a fast-reacting inhibitor of trypsin but only accounts for a very small part of the fast-reacting trypsin-inhibitory activity of plasma. This can be explained by the low concentration of antiplasmin (1 muM) in normal plasma, compared to the other inhibitors (e.g. alpha1-antitrypsin: 40-80 muM).  相似文献   

10.
Mechanism of inhibition of activated protein C by protein C inhibitor   总被引:6,自引:0,他引:6  
Protein C inhibitor isolated from human plasma inhibited thrombin, factor Xa, trypsin and chymotrypsin as well as activated protein C, but had very little effect on urokinase and plasmin. The inhibition constants (K1) of protein C inhibitor for activated protein C, thrombin and factor Xa were 5.6 X 10(-8) M, 6.7 X 10(-8) M and 3.1 X 10(-7) M, respectively. The second-order rate constant for inhibition of activated protein C by the inhibitor increased about 30-fold in the presence of an optimal heparin concentration (5-10 units/ml). The inhibition of activated protein C by plasma protein C inhibitor was also accelerated by heparin. When activated protein C (Mr = 62,000) was incubated with protein C inhibitor (Mr = 57,000), enzyme-inhibitor complexes with apparent Mr = 102,000 and 88,000 were observed in the nonreduced and the reduced samples, respectively, on SDS-polyacrylamide gel electrophoresis. In addition to these complexes, a band of unbound enzyme and a band with Mr = 54,000 were detected. When 125I-labeled protein C inhibitor was exposed to activated protein C, the inhibitor band was converted to bands with apparent Mr = 102,000 and 54,000 in the nonreduced samples, as determined by autoradiography after gel electrophoresis in SDS. The band with Mr = 54,000 also appeared when the inhibitor reacted with other serine proteases. The activated protein C was released from the inactive complex by treatment with 1 M ammonia or hydroxylamine. This phenomenon was found by SDS-polyacrylamide gel electrophoresis to represent the dissociation of the enzyme-inhibitor complex by ammonia or hydroxylamine into the free enzyme and the proteolytically modified inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Three protein inhibitors of serine proteinases were isolated from the crude venom of the long-nosed viper Vipera ammodytes ammodytes by ion-exchange and gel chromatography. Two of them strongly inhibit trypsin (Ki = 3.4 X 10(-10) and 5.6 X 10(-10) M), while the third one primarily inhibits chymotrypsin (Ki = 4.3 X 10(-9) M). Their Mr values are close to 7000, and pI is 9.8 in both trypsin inhibitors and 10.0 in the chymotrypsin inhibitor. The N-terminal group in the former inhibitors is blocked; arginine is the N-terminal amino acid in the latter. Besides trypsin and alpha-chymotrypsin, the trypsin inhibitors also inhibit plasmin, human plasma kallikrein and porcine pancreatic kallikrein. The chymotrypsin inhibitor inhibits trypsin and human plasma kallikrein only weakly and does not inhibit plasmin and porcine pancreatic kallikrein. According to their properties, all three inhibitors belong to the Kunitz-pancreatic trypsin inhibitor family of inhibitors.  相似文献   

12.
The proteolytic digestion of GPIIIa on intact platelets by chymotrypsin, thrombin, plasmin, trypsin, and staphylococcal V8 protease was monitored in immunoblot studies employing three different antibodies to GPIIIa, one of which was made against a 13-residue synthetic peptide containing the amino terminus of GPIIIa. Chymotrypsin, plasmin, and trypsin gave similar patterns, from which it could be inferred that the major products after extensive digestion were two-chain molecules composed of amino-terminal fragments of Mr approximately 17,000-18,000 disulfide bonded to carboxyl-terminal remnants of Mr approximately 58,000-70,000. These patterns suggest that GPIIIa contains a large disulfide-bonded loop of at least 325 amino acids that is susceptible to proteolytic cleavage, and that the 4 cysteine residues between residues 177 and 273 bond with each other. Such a structure can also account for the presence of the PIA1 epitope, which has recently been localized to a polymorphism at position 33 on these late digestion products. Thrombin did not proteolyze GPIIIa even at 2.5 units/ml. Still to be resolved is whether the minor immunoreactive GPIIIa bands found on normal platelets are related to in vivo or in vitro proteolysis and whether GPIIIa proteolysis plays a role in chymotrypsin-induced exposure of the GPIIb/IIIa receptor.  相似文献   

13.
A novel serine proteinase inhibitor, DgTI, was purified from Dioclea glabra seeds by acetone precipitation, and ion-exchange and reverse phase chromatography. The inhibitor belongs to the Bowman-Birk family, and its primary sequence, determined by Edman degradation and mass spectrometry, of 67 amino acids is: SSGPCCDRCRCTKSEPPQCQCQDVRLNSCHSACEACVCSHSMPGLCSCLDITHFCHEPCKSSGDDED++ +. Although two reactive sites were determined by susceptibility to trypsin (Lys(13) and His(40)), the inhibitory function was assigned only to the first site. The inhibitor forms a 1:1 complex with trypsin, and Ki is 0.5 x 10(-9) M. Elastase, chymotrypsin, kallikreins, factor Xa, thrombin, and plasmin were not inhibited. By its properties, DgTI is a Bowman-Birk inhibitor with structural and inhibitory properties between the class of Bowman-Birk type I (with a fully active second reactive site), and Bowman-Birk type II (devoid of second reactive site).  相似文献   

14.
The in vitro digestibility of Ulva armoricana proteins by trypsin, chymotrypsin and human intestinal juice was determined to evaluate their nutritional value. The amino acid composition of the protein fraction and its changes during a sampling period from October to February were also studied. Some differences in the protein pattern shown by SDS PAGE were found in different months, such as the presence of a 54 kDa protein in February. The protein fraction is composed mainly of aspartic and glutamic acids (24–35% of protein fraction, according to season) and the essential amino acids constitute 27–36% of the total fraction. The efficiencies of trypsin and chymotrypsin in Ulva protein digestion are comparable. Only four proteins with apparent molecular weights of 86, 68, 40, and 29 KDa are digested by these proteolytic systems. The proteins from the October sample were more sensitive to chymotrypsin than those from the February sample. For instance, two proteins with apparent molecular weights of 100 and 67 kDa were weakly digested by chymotrypsin in the February extract, were fully digested in the October sample. The February sample differed from two others in the presence of glycosylated proteins, most of which have apparent molecular weights higher than 43 KDa. With the October sample, the activity of human intestinal juice was more effective than two other proteolytic systems. This is especially evident with a 27 kDa protein, which was only partially digested by the intestinal liquid and not digested by chymotrypsin or trypsin. However, human intestinal juice in the February apparently did not attack the 27 kDa protein. These data suggest a change in protein structure making it less sensitive to human intestinal juice. The glycosylation of protein extract, which was especially marked in February, could explain the differences in behaviour of U. armoricana proteins in response to the digestive action of human enzymes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Thrombin exhibits a restricted specificity, relative to plasmin, trypsin, and chymotrypsin, for a series of derivatives of the titrant substrate p-nitrophenyl-p′-guanidinobenzoate (NPGB). Substitution on the beta guanidino nitrogen of NPGB with an n-butyl, n-hexyl, cyclo-hexyl, or benzyl residue does not prevent the esterolytic cleavage of these derivatives but does markedly alter their substrate properties with the four enzymes investigated.All four enzymes cleave NPGB at equivalent concentrations by releasing p-nitrophenol as pre-steady-state burst reactions followed by its steady-state production. Both chymotrypsin and trypsin similarly display burst reactions with the derivatives at corresponding concentrations. The acyl-enzyme intermediates formed with chymotrypsin, however, are more stable for the derivatives than for NPGB, and those formed with trypsin are less stable. In contrast, plasmin and thrombin exhibit incomplete burst reactions with the derivatives at these concentrations. Except for the cyclo-hexyl derivative, with which plasmin does not react, the derivatives relative to NPGB were cleaved faster by plasmin than by thrombin. These cleavages with thrombin, moreover, were competitively inhibited by benzamidine. Kinetic data obtained for thrombin further indicated that the substituent groups of derivatives hindered the initial formation of enzyme-substrate complexes. These results suggest that thrombin and, most likely, plasmin have restricted primary binding-site regions for small molecule substrates which do not readily accommodate bulky substituent groups.In addition, increasing concentrations of glycerol were found to greatly alter the esterolytic properties of thrombin for the compounds studied. This effect was demonstrated by increased deacylation rates with NPGB and by decreased cleavage rates with the n-butyl derivative.  相似文献   

16.
Apolipoprotein B-100, the major protein constituent of human plasma low-density lipoproteins (LDL), was carboxyamidomethylated, digested with trypsin and the water-soluble tryptic peptides were coincubated with liposomes of dimyristoylphosphatidylcholine (DMPC). At 24.3 degrees C the peptides induced lipid solubilization as evidenced by optical clearing of the lipid-peptide mixture. Lipid-peptide complexes were isolated by density-gradient ultracentrifugation in KBr and had the following properties: DMPC/peptide ratio of 5.6 (w/w); buoyant density of 1.07-1.09 g/ml; discoidal morphology (51 +/- 4 X 260 +/- 28 A) as determined by electron microscopy; and molecular weight of 1.5 X 10(6) as determined by nondenaturing polyacrylamide gel electrophoresis. Compared to liposomes and sonicated vesicles of DMPC, the lipid-peptide complexes had a more rigid structure as assessed by fluorescence polarization. Whereas intact LDL had 42% alpha-helix and 15% beta-pleated sheet, the lipid-peptide complexes contained 70% alpha-helix and less than 5% beta-pleated sheet. The lipid-peptide complexes did not bind to the fibroblast high-affinity LDL receptor. These results show that specific regions in apolipoprotein B-100 which interact with phospholipid have an amphipathic character and may represent primary sites for lipid-protein interaction in LDL.  相似文献   

17.
The proteolytic fragments of the nuclear estrogen receptor in the MCF-7 cell line were characterized following limited digestion with chymotrypsin and trypsin. Nuclei were isolated from cells previously exposed to 10 nM [3H]estradiol. The proteolytic digestion was performed either on the micrococcal nuclease hydrolysate or on intact nuclei. The molecular weights (Mr) were calculated from the sedimentation coefficients determined on a sucrose gradient and from the Stokes radii estimated by gel filtration. Digestion of the nuclei with micrococcal nuclease solubilized a receptor form of Mr = 151,000. This receptor form was degraded by chymotrypsin to a receptor of Mr = 33,000 and by trypsin to a receptor of Mr = 60,000. Digestion of intact nuclei with chymotrypsin solubilized a receptor form of Mr = 62,000 which dissociated in 0.4 M KCl to a receptor of Mr = 32,000. Digestion of intact nuclei with trypsin followed by micrococcal nuclease solubilized a receptor form of Mr = 75,000 which was further dissociated by 0.4 M KCl to a receptor form of Mr = 60,000. The ability of the receptor forms to bind DNA was tested using DNA-cellulose column chromatography. About 40% of the micrococcal nuclease solubilized receptor form, compared to about 7% of the chymotrypsin degraded receptor and to about 13% of the trypsin degraded receptor forms, all bound to the column and could be eluted by high salt concentrated buffer. We conclude that the nuclear estrogen receptor in the MCF-7 cell line can be partially degraded either in the micrococcal nuclease hydrolysate or in intact nuclei by chymotrypsin or trypsin generating protein moieties, probably receptor fragments of Mr = 33,000 and 60,000 respectively. Both fragments retain their estradiol binding domain and it may be hypothesized that the heavier fragment retains its chromatin binding domain.  相似文献   

18.
A plasma kallikrein inhibitor in guinea pig plasma (KIP) was purified to homogeneity. KIP is a single chain protein and the apparent molecular weight is estimated to be 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In amino acid composition, KIP is similar to human and mouse alpha 1-proteinase inhibitors and mouse contrapsin. KIP forms an equimolar complex with plasma kallikrein in a dose- and time-dependent fashion. The association rate constants for the inhibition of guinea pig plasma kallikrein by KIP, alpha 2-macroglobulin, C1-inactivator and antithrombin III were 2.5 +/- 0.3.10(4), 2.4 +/- 0.4.10(4), 6.6 +/- 0.5.10(4) and 9.1 +/- 0.6.10(2), respectively. Comparison of the association rate constants and the normal plasma concentrations of the four inhibitors demonstrates that KIP is ten-times as effective as alpha 2-MG and other two inhibitors are marginally effective in the inhibition of kallikrein. KIP inhibits trypsin and elastase rapidly, and thrombin and plasmin slowly, but is inactive for chymotrypsin and gland kallikrein. These results suggest that KIP is the major kallikrein inhibitor in guinea pig plasma and the proteinase inhibitory spectrum is unique to KIP in spite of the molecular similarity to alpha 1-proteinase inhibitor.  相似文献   

19.
1. alpha-1-Antiproteinase (also called alpha-1-antitrypsin or alpha-1-proteinase inhibitor) with a molecular mass of 60 kDa was purified to apparent homogeneity from hamster plasma. 2. It inhibited elastase, chymotrypsin and trypsin, but did not significantly affect pancreatic kallikrein, plasma kallikrein or plasmin. 3. It has the same N-terminal heptapeptide sequence as that of rat alpha-1-antiproteinase. 4. Its plasma level decreased after injection of bacterial lipopolysaccharide.  相似文献   

20.
The effect of trypsin treatment on the heparin- and receptor-binding properties of human plasma low-density lipoproteins (LDL) was examined. LDL were treated with trypsin (2% by weight) for 16 h at 37 degrees C, and the trypsinized core particles (T-LDL) were isolated by gel permeation chromatography on Sepharose CL-4B. Trypsin degraded the apolipoprotein B moiety (Mr = 550,000) of LDL into numerous peptides of Mr less than 110,000, resulting in the release of 25% +/- 5% (n = 6) of its surface-associated protein. Relative to LDL, T-LDL had an increased phospholipid/protein ratio, decreased flotation density and alpha-helical structure, and increased fluidity of the surface and core constituents. Compared to LDL, T-LDL showed a 60% decreased capacity to suppress [1-14C]acetate incorporation into cellular sterols consistent with decreased binding to the LDL receptor. In contrast, T-LDL showed an enhanced capacity to form soluble complexes with heparin in the absence and presence of 2 mM Ca2+. Between 5 and 25 mM Ca2+, both LDL and T-LDL were maximally precipitated by heparin; the stoichiometry of the insoluble complexes (uronic acid/phospholipid, w/w) was 0.054 +/- 0.004 and 0.055 +/- 0.005 (n = 18) for LDL and T-LDL, respectively. Thus, trypsin treatment significantly diminished the lipoprotein's interaction with cells but not with heparin. This finding suggests that proteolysis may decrease receptor-mediated uptake of LDL without diminishing the lipoprotein's reactivity with acellular components of the arterial wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号