首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Sener  A.  Scruel  O.  Louchami  K.  Jijakli  H.  Malaisse  W.J. 《Molecular and cellular biochemistry》1999,194(1-2):133-145
The analog of D-glucose, 3-O-methyl-D-glucose, is thought to delay the equilibration of D-glucose concentration across the plasma membrane of pancreatic islet B-cells, but not to exert any marked inhibitory action upon the late phase of glucose-stimulated insulin release. In this study, however, 3-O-methyl-D-glucose, when tested in high concentrations (30-80 mM) was found to cause a rapid, sustained and not rapidly reversible inhibition of glucose-induced insulin release in rat pancreatic islets. In relative terms, the inhibitory action of 3-O-methyl-D-glucose was more marked at low than high concentrations of D-glucose. It could not be attributed to hyperosmolarity and appeared specific for the insulinotropic action of D-glucose, as distinct from non-glucidic nutrient secretagogues. Although 3-O-methyl-D-glucose and D-glucose failed to exert any reciprocal effect upon the steady-state value for the net uptake of these monosaccharides by the islets, the glucose analog inhibited D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation. This coincided with increased 86Rb outflow and decreased 45Ca outflow from prelabelled islets, as well as decreased 45Ca net uptake. A preferential effect of 3-O-methyl-D-glucose upon the first phase of glucose-stimulated insulin release was judged compatible with an altered initial rate of D-glucose entry into islet B-cells. The long-term inhibitory action of the glucose analog upon the metabolic and secretory response to D-glucose, however, may be due, in part at least, to an impaired rate of D-glucose phosphorylation. The phosphorylation of the hexose by beef heart hexokinase and human B-cell glucokinase, as well as by parotid and islet homogenates, was indeed inhibited by 3-O-methyl-D-glucose. The relationship between insulin release and D-glucose utilization or oxidation in the presence of 3-O-methyl-D-glucose was not different from that otherwise observed at increasing concentrations of either D-glucose or D-mannoheptulose. It is concluded, therefore, that 3-O-methyl-D-glucose adversely affects the metabolism and insulinotropic action of D-glucose by a mechanism largely unrelated to changes in the intracellular concentration of the latter hexose.  相似文献   

2.
The effect of secretin on glucagon and insulin release and its interaction with glucose has been studied in cultured mouse pancreatic islets by column perifusion. Glucose alone showed the well-known stimulation of insulin release and inhibition of glucagon release. Addition of 10 mM secretin increased glucagon secretion at 3 mM D-glucose by 300% while no change in insulin release could be seen at this low glucose concentration. At maximal stimulation of insulin release by 20 mM D-glucose addition of 10 nM secretin increased insulin release by 30%. Despite this insulin concentration and the high glucose concentration an increase in glucagon secretion of 1800% was found. These effects of secretin were dose-dependent at 10 mM D-glucose with 1 nM secretin being the lowest effective dose.  相似文献   

3.
Glucose caused a sustained and dose-related increase in the fructose 2,6-bisphosphate content of isolated pancreatic islets, as well as of purified pancreatic B-cells. With isolated B-cells, the glucose saturation curve was sigmoidal and superimposable on that obtained with hepatocytes isolated from unfed rats. However, the response to glucose was notably faster in purified B-cells than in isolated hepatocytes. In contrast again with the situation prevailing in the liver, glucagon failed to decrease significantly the concentration of fructose 2,6-bisphosphate in either islets or purified B-cells. It is proposed that, in the process of glucose-stimulated insulin secretion, an early increase in fructose 2,6-bisphosphate formation may, by causing activation of 6-phosphofructo-1-kinase, allow glycolysis to keep pace with the rate of glucose phosphorylation.  相似文献   

4.
Investigation of glucagon secretion in isolated Wistar rat islets was carried out to elucidate further the regulatory function of glucose and arginine on pancreatic A-cells. The suppressive effect of D-glucose could also be demonstrated with L-glucose, D-mannose, D-fructose, D-galactose, D-glyceraldehyde and DL-dihydroxyacetone, but not in the presence of 3-O-methylglucose or mannitol. Sugars other than D-glucose inhibited glucagon secretion only at much higher concentrations than those at which D-glucose was effective. Furthermore, although 7.5 mM D-glucose up to 80% inhibition, the effects of other sugars appeared to level off at only 50--60% inhibition. The inhibitory action of D-glucose or D-glyceraldedyde on glucagon secretion could not be overcome by L-arginine, but 3-O-methylglucose, mannoheptulose, 2-deoxy-D-glucose, iodoacetamide, theophylline, epinephrine and acetylcholine were effective. The insulin secretion in response to glucose was inhibited by the metabolic inhibitors used, whereas the B-cell response in the presence of glyceraldehyde was diminished by iodoacetamide only. Like D-glucose, a variety of other sugars markedly reduced the stimulatory effect of L-arginine in glucagon release. The results show that the suppression of glucagon secretion is not specific for D-glucose and not strongly connected on a stimulated insulin secretion.  相似文献   

5.
Investigation of glucagon secretion in isolated Wistar rat islets was carried out to elucidate further the regulatory function of glucose and arginine on pancreatic A-cells. The suppressive effect of D-glucose could also be demonstrated with L-glucose, D-mannose, D-fructose, D-galactose, D-glyceraldehyde and DL-dihyroxyacetone, but not in the presence of 3-O-methylglucose or mannitol. Sugars other than D-glucose inhibited glucagon secretion only at much higher concentrations than those at which D-glucose was effective. Furthermore, although 7.5 mM D-glucose caused up to 80% inhibition, the effects of other sugars appeared to level off at only 50–60% inhibition. The inhibitory action of D-glucose or D-glyceraldehyde on glucagon secretion could not be overcome by L-arginine, but 3-O-methylglucose, mannoheptulose, 2-deoxy-D-glucose, iodoacetamide, theophylline, epinephrine and acetylcholine were effective. The insulin secretion in response to glucose was inhibited by the metabolic inhibitors used, whereas the B-cell response in the presence of glyceraldehyde was diminished by iodoacetamide only. Like D-glucose, a variety of other sugars markedly reduced the stimulatory effect of L-arginine in glucagon release.The results show that the suppression of glucagon secretion is not specific for D-glucose and not strongly connected on a stimulated insulin secretion.  相似文献   

6.
Glucose metabolism in mouse pancreatic islets   总被引:35,自引:22,他引:13  
1. Rates of glucose oxidation, lactate output and the intracellular concentration of glucose 6-phosphate were measured in mouse pancreatic islets incubated in vitro. 2. Glucose oxidation rate, measured as the formation of (14)CO(2) from [U-(14)C]glucose, was markedly dependent on extracellular glucose concentration. It was especially sensitive to glucose concentrations between 1 and 2mg/ml. Glucose oxidation was inhibited by mannoheptulose and glucosamine but not by phlorrhizin, 2-deoxyglucose or N-acetylglucosamine. Glucose oxidation was slightly stimulated by tolbutamide but was not significantly affected by adrenaline, diazoxide or absence of Ca(2+) (all of which may inhibit glucose-stimulated insulin release), by arginine or glucagon (which may stimulate insulin release) or by cycloheximide (which may inhibit insulin synthesis). 3. Rates of lactate formation were dependent on the extracellular glucose concentration and were decreased by glucosamine though not by mannoheptulose; tolbutamide increased the rate of lactate output. 4. Islet glucose 6-phosphate concentration was also markedly dependent on extracellular glucose concentration and was diminished by mannoheptulose or glucosamine; tolbutamide and glucagon were without significant effect. Mannose increased islet fructose 6-phosphate concentration but had little effect on islet glucose 6-phosphate concentration. Fructose increased islet glucose 6-phosphate concentration but to a much smaller extent than did glucose. 5. [1-(14)C]Mannose and [U-(14)C]fructose were also oxidized by islets but less rapidly than glucose. Conversion of [1-(14)C]mannose into [1-(14)C]glucose 6-phosphate or [1-(14)C]glucose could not be detected. It is concluded that metabolism of mannose is associated with poor equilibration between fructose 6-phosphate and glucose 6-phosphate. 6. These results are consistent with the idea that glucose utilization in mouse islets may be limited by the rate of glucose phosphorylation, that mannoheptulose and glucosamine may inhibit glucose phosphorylation and that effects of glucose on insulin release may be mediated through metabolism of the sugar.  相似文献   

7.
Both D-glucose and its nonmetabolized analog 3-O-methyl-D-glucose are known to protect the pancreatic B-cell against the toxic action of alloxan, as if the protective action of hexoses were to involve a membrane-associated glucoreceptor site. In the present study, the protective actions of the two hexoses were found to differ from one another in several respects. Using the process of glucose-stimulated insulin release by rat pancreatic islets as an index of alloxan cytotoxicity, we observed that the protective action of D-glucose was suppressed by D-mannoheptulose and menadione, impaired by NH4Cl, and little affected by aminooxyacetate. These findings and the fact that D-glucose failed to decrease [2-14C]alloxan uptake by the islets suggest that the protective action of D-glucose depends on an increase in the generation rate of reducing equivalents (NADH and NADPH). The latter view is supported by the observation that the protective action of a noncarbohydrate nutrient, 2-ketoisocaproate, was also abolished by menadione. Incidentally, the protective action of 2-ketoisocaproate was apparently a mitochondrial phenomenon, it not being suppressed by aminooxyacetate. In contrast to that of glucose, the protective action of 3-O-methyl-D-glucose was unaffected by D-mannoheptulose, failed to be totally suppressed by menadione, and coincided with a decreased uptake of [2-14C]-alloxan by the islets. It is concluded that the protective action of D-glucose in linked to the metabolism of the sugar in islet cells, whereas that of 3-O-methyl-D-glucose results from inhibition of alloxan uptake. This conclusion reinforces our opinion that the presence in the B-cell of an alleged stereospecific membrane glucoreceptor represents a mythical concept.  相似文献   

8.
Perfusion of isolated dog pancreases with arginine (20 mM) was associated with a prompt and sustained increase in immunoreactive somatostatin (IRS) in the venous effluent while insulin and glucagon rose promptly but soon receded from their peak levels. These results are compatible with a postulated feedback relationship between somatostatin-, glucagon-, and perhaps insulin-secreting cells of the islets in which somatostatin, stimulated by local glucagon, restrains glucagon secretion and perhaps glucagon-mediated insulin release as well.The demonstration that D-cells of the pancreatic islets contain immunoreactive somatostatin (1, 2, 3) which is probably biologically active (4), and are situated topographically between the A-cells and B-cells in the heterocellular region of the islet (5) has suggested a functional role for these components of the islet of Langerhans (6). In view of the inhibitory action of somatostatin upon both insulin and glucagon secretion (7, 8, 9), it was postulated that the D-cell might serve to restrain glucagon and/or insulin secretion (6). We have since reported that the release of IRS from the isolated dog pancreas increases promptly during the perfusion of high concentrations of glucagon whereas high concentrations of insulin do not appear to stimulate IRS release (10). In this study we examine the effect of perfusion with arginine, a potent stimulus of both glucagon and insulin secretion, upon pancreatic IRS release.  相似文献   

9.
Glucose uptake and oxidation were markedly higher in cultured than in freshly isolated neural cells, prepared from murine fetal brain cortices. The hexose transport process--measured as 3-O-methyl-D-glucose uptake--appeared comparable in both conditions, and proceeded proportionally to the extracellular sugar concentration up to 6 mM. In contrast, glucose oxidation occurred independently of the prevailing glucose concentration from 1.4 mM on. Acute or chronic exposure to insulin exerted no effect upon cellular glucose uptake or oxidation. These results suggest that glucose handling by maturing fetal cortical cells is mainly determined by the rate of cellular glucose breakdown rather than by the rate of glucose transport into the cell; the marked rise in cellular glucose metabolism during culture might result from the synthesis and/or activation of a key enzyme in glucose catabolism. Our observations also indicate that the previously described neurotrophic effects of insulin are not mediated via enhanced glucose handling.  相似文献   

10.
The role of glucose metabolism in sperm cell motility was examined in purified human spermatozoa from the perspective of elucidating its possible significance in spontaneous and experimental diabetes. After a 4-h incubation in the absence of D-glucose, the mean progressive velocity of human spermatozoa was 40% lower than that of control cells kept in the presence of D-glucose. The decline was rapidly overcome by the addition of D-glucose or D-fructose, the amplitude of this stimulatory effect being independent of the ambient hexose concentration. Between 1.4 and 16.7 mM glucose, spermatozoal glucose oxidation also proceeded independently of the extracellular glucose levels, whereas both insulin (100nM) and glucagon (100nM) failed to significantly affect the rate of glucose metabolism or cellular motility. It is speculated from these results that an alteration in seminal hexose concentrations or pancreatic hormone levels may be an unlikely cause for the reduced sperm motility that is characteristically observed in diabetic patients. Human spermatozoa rapidly incorporated D-glucose and 3-O-methyl-D-glucose but excluded the glucose-analogue alloxan, which may explain their resistance against the toxic effects of this diabetogenic drug, in spite of their intrinsic sensitivity to organic peroxides such as tert-butyl hydroperoxide.  相似文献   

11.
Poorly metabolized hexoses, such as 3-O-methyl-D-glucose, 2-deoxy-D-glucose and D-galactose failed to reproduce the inhibition of 86Rb outflow, the early inhibition and secondary rise in 45Ca efflux and the stimulation of insulin release evoked by D-glucose in perifused rat islets. Insulin release induced by either D-glucose or 2-ketoisocaproate was also unaffected by 3-O-methyl-D-glucose. It is concluded that hexose transport in islet cells does not represent in itself a significant determinant of the cationic and secretory response to D-glucose.  相似文献   

12.
Glucose metabolism and insulin secretion were studied in isolated rat pancreatic islets of different sizes and the amount of tissue was quantitated by the measurement of DNA. It was found that larger islets (140-210 ng DNA/islet) utilized more glucose (based on the conversion of 3H-5-glucose to [3H]20) per ng of DNA than islets containing less DNA (60-120 ng/islet). However, the insulin secreted per ng of DNA in response to a given glucose concentration was the same in islets of all sizes. Also, the islet insulin and glucagon content when expressed in terms of DNA did not depend upon islet size. Thus, although glucose utilization rates expressed as a function of islet DNA content were greater in larger islets, no such relationship was found for glucose-induced insulin release or insulin and glucagon content.  相似文献   

13.
In pancreatic islet homogenates incubated in the presence of a high glucose concentration (40 mM), the beta-anomer of D-glucose is phosphorylated at a higher rate than the alpha-anomer, whether in the absence or presence of exogenous glucose 6-phosphate. However, in intact islets also exposed to 40 mM D-glucose, the production of 3H2O from D-[5-3H] glucose, the oxidation of D-[U-14C] glucose and the glucose-induced increment in either lactate production or 45Ca net uptake, as well as the release of insulin from isolated perfused pancreases, are not higher with beta- than alpha-D-glucose. It is concluded that the rate of glucose utilization by islet cells is not regulated solely by the activity of hexokinase and/or glucokinase.  相似文献   

14.
The glucose effect on insulin release in a Ca(2+)-deficient medium was analyzed in perifusion experiments with aggregates of cells prepared by dispersal of the beta-cell-rich pancreatic islets of ob/ob-mice. Hyperosmolar additions of 20 mM D-glucose or its poorly metabolized transport analogue 3-0-methyl-D-glucose resulted in 50% suppression of the secretory rate. However, after isosmolar additions of the sugars, replacing non-penetrating sucrose, there was a stimulation of insulin release. Whereas D-glucose was less effective than 3-O-methyl-D-glucose in stimulating insulin release after isosmolar addition, the opposite was found for the enhanced secretory response obtained when the sugars were excluded from the perifusion medium. The studies indicate that D-glucose has regulatory actions on insulin release also in the virtual absence of extracellular Ca2+. This effect is not only due to osmolar influences but involves also direct suppression of the secretory activity probably mediated by the metabolism of the sugar.  相似文献   

15.
Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release of insulin by 30% and maintained that level for the full 30-min test period. The rate of insulin release returned to the glucose-induced base line after removal of the peptide. The same insulin level was produced by 3 x 10(-9) M glucagon, and at 3 x 10(-7) M glucagon insulin release was enhanced 290% above the glucose base line.  相似文献   

16.
The pentose cycle and insulin release in mouse pancreatic islets   总被引:35,自引:17,他引:18  
1. Rates of insulin release, glucose utilization (measured as [(3)H]water formation from [5-(3)H]glucose) and glucose oxidation (measured as (14)CO(2) formation from [1-(14)C]- or [6-(14)C]-glucose) were determined in mouse pancreatic islets incubated in vitro, and were used to estimate the rate of oxidation of glucose by the pentose cycle pathway under various conditions. Rates of oxidation of [U-(14)C]ribose and [U-(14)C]xylitol were also measured. 2. Insulin secretion was stimulated fivefold when the medium glucose concentration was raised from 3.3 to 16.7mm in the absence of caffeine; in the presence of caffeine (5mm) a similar increase in glucose concentration evoked a much larger (30-fold) increase in insulin release. Glucose utilization was also increased severalfold as the intracellular glucose concentration was raised over this range, particularly between 5 and 11mm, but the rate of oxidation of glucose via the pentose cycle was not increased. 3. Glucosamine (20mm) inhibited glucose-stimulated insulin release and glucose utilization but not glucose metabolism via the pentose cycle. No evidence was obtained for any selective effect on the metabolism of glucose via the pentose cycle of tolbutamide, glibenclamide, dibutyryl 3':5'-cyclic AMP, glucagon, caffeine, theophylline, ouabain, adrenaline, colchicine, mannoheptulose or iodoacetamide. Phenazine methosulphate (5mum) increased pentose-cycle flux but inhibited glucose-stimulated insulin release. 4. No formation of (14)CO(2) from [U-(14)C]ribose could be detected: [U-(14)C]xylitol gave rise to small amounts of (14)CO(2). Ribose and xylitol had no effect on the rate of oxidation of glucose; ribitol and xylitol had no effect on the rate of glucose utilization. Ribose, ribitol and xylitol did not stimulate insulin release under conditions in which glucose produced a large stimulation. 5. It is concluded that in normal mouse islets glucose metabolism via the pentose cycle does not play a primary role in insulin-secretory responses.  相似文献   

17.
1. Concentrations of glucose 6-phosphate and 6-phosphogluconate were studied in islets of Langerhans isolated from rat pancreas and incubated in the presence of various agents that induce insulin release. 2. In response to rising concentrations of extracellular glucose (2-10mm) there is a linear increase in the intracellular concentration of glucose 6-phosphate, though this is not the case for 6-phosphogluconate, the intracellular concentration of which only increases when the external glucose concentration exceeds 5mm. 3. Tolbutamide, octanoate and citrate, all of which promote insulin secretion from isolated islets, increase the intracellular concentrations of glucose 6-phosphate and 6-phosphogluconate. The results obtained in the presence of octanoate and citrate are compatible with an inhibitory effect of citrate on islet-cell phosphofructokinase. 4. Theophylline and glucagon when incubated with islets in vitro promote insulin release and cause a rise in 6-phosphogluconate concentration and not in that of glucose 6-phosphate. 5. It is suggested that the further metabolism of glucose 6-phosphate through a pathway other than glycolysis is essential for insulin release. One such pathway involves its oxidation to 6-phosphogluconate, which seems to be a necessary accompaniment of insulin secretion due to glucose. The possibility that agents other than glucose promote insulin release by enhancing the oxidation of glucose 6-phosphate through this pathway is discussed.  相似文献   

18.
The metabolic and secretory effects of methylamine in rat pancreatic islets were investigated. Methylamine accumulated in islet cells, was incorporated into endogenous islet proteins, and inhibited the incorporation of [2,5-3H] histamine into either N,N-dimethylcasein or endogenous islet proteins. Methylamine (2 mM ) did not affect the oxidation of glucose or endogenous nutrients or the intracellular pH in islet cells. Glucose did not affect the activity of transglutaminase in islet homogenates, the uptake of 14C-methylamine by intact islets or its incorporation into endogenous islet proteins. Methylamine inhibited insulin release evoked by glucose, other nutrient secretagogues, and non-nutrient insulinotropic agents such as L -arginine or gliclazide. The inhibitory effect of methylamine upon insulin release was diminished in the presence of cytochalasin B or at low extracellular pH. Methylamine retarded the conversion of proinsulin to insulin. Trimethylamine (0.7 mM ) was more efficiently taken up by islet cells than methylamine (2.0 mM ), and yet caused only a modest inhibition of insulin release. These findings suggest that methylamine interferes with a late step in the secretory sequence, possibly by inhibiting the access of secretory granules to their exocytotic site.  相似文献   

19.
The glucose responsiveness of alpha- and beta-cells of normal as well as untreated and insulin-treated streptozotocin diabetic rats was tested in the extracorporeal perfusion system. Also assessed was the possible in vitro effect of added insulin on the glucose sensitivity of islets from untreated diabetic animals. Insulin and glucose responsiveness of the two cell types. The rate of glucose entry islet tissue was estimated, and the effect of glucose on the tissue supply of ATP and lactate and the cyclic 3':5'-AMP level of islets was measured under the above in vitro conditions. It was demonstrated that beta-cells are more accessible to glucose than alpha-cells, that glucose entry into islet cells is not significantly modified by insulin and that glucose had no effect on ATP, lactate and cyclic 3':5'-AMP levels of islet tissue under any of the conditions investigated. High insulin in vitro elevated ATP levels of alpha-cell islets independent of extracellular glucose. Glucose caused insulin release from normal but not from diabetic islets and rapidly and efficiently suppressed stimulated glucagon secretion of the pancreas from normal and insulin treated diabetic rats. Glucose was less effective in inhibiting stimulated glucagon secretion by the pancreas from untreated diabetic rats whether insulin was added to the perfusion media or not. Therefore, profound differences of glucose responsiveness of alpha-cells fail to manifest themselves in alterations of basic parameters of glucose and energy metabolism in contrast to what had been postulated in the literature. It is however, apparent that the glucose responsiveness of alpha-cells is modified by insuling by an as yet undefined mechanism.  相似文献   

20.
The glucagon-like immunoreactivity of the gastrointestinal tract is heterogeneous, probably including several different peptides. One of these peptides, glicentine, has recently been extracted and highly purified. Furthermore, by immunocytochemistry a glicentine-like peptide has been reported to occur in the glucagon cell of the pancreatic islets. In the present study we investigated the effects of pure glicentine on insulin release in vivo in mice. The effects were compared with effects of two other peptides, glucagon and GIP. It was found that glicentine had no influence on basal insulin secretion. This was in contrast to equimolar doses of glucagon and GIP, which both stimulated the secretion of insulin. Glucose-induced insulin release was partially inhibited by glicentine. D-glucose, in a dose selected to give a response of 25% of its maximal, raised the plasma insulin concentrations by 44.0 +/- 5.9 microU/ml. The corresponding rise for glicentine plus D-glucose was 22.3 +/- 3.7 microU/ml, i.e. glicentine inhibited glucose-induced insulin released by about 50% (p < 0.01). GIP, on the other hand, enhanced glucose-induced insulin release. This enhancement was diminished by glicentine, a reflection of the inhibition by glicentine of the glucose-induced insulin release. Neither glicentine nor GIP in the doses tested had any effect on insulin secretion induced by cholinergic stimulation. In conclusion, glicentine seems to have no effect on basal insulin release in the mouse, but it partially inhibits glucose-induced insulin secretion. Thus, if the recently demonstrated glicentine-like peptide in the glucagon cell is authentic glicentine, the glucagon cell of the pancreatic islets may contain peptides with stimulatory (glucagon) as well as inhibitory (glicentine) effects on insulin secretion induced by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号