首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Winter wheat (Triticum sativum L. ev. Nisu) was grown in sand which contained 0, 0.25, 0.5 and 1.0 mg S-ethyl dipropylthicarbamate (EPTC) per kg air dry sand. In 21 day old roots, the phospholipids (PL) were extracted in ice-cold chloroform/methanol (2:1, v/v) and isolated by thin layer chromatography (TLC). The PL fatty acids were analysed by gas liquid chromatography (GLC). The major fatty acids of the root PL fraction were palmitic, oletic, linoleic, and linolenic (22.4, 6.8, 39.2, and 23.1 μ/g root fresh weight, respectively). Total fatty acid content of the PL fraction was decreased to 39% by 1 mg EPTC/kg sand in which linolenic acid was decreased to 28%. The remainder of the major fatty acid constituents were decreased to 12–47%. The general quality of fatty acids in the PL fraction was slightly altered, while a 60% inhibition of total PL production resulted.  相似文献   

2.
Changes in fatty acid, phospholipid and galactolipid contents during cellular and organ differentiation in Aegle marmelos have been described. Decrease in phosphatidylinositol content and presence of 3-trans-hexadecenoic acid in phosphatidylglycerol were related to greening and shoot buds differentiation. The galactolipids level, the monogalactosyl diglyceride/digalactosyl diglyceride ratio and the linolenic acid level (mainly in monogalactosyl diglyceride) increased with the degree of differentiation, indicating the possible biogenesis of functional chloroplasts.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - BA benzylaminopurine - DW dry weight - FW fresh weight - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PG phosphatidylglycerol - PS phosphatidyl serine - MGDG monogalactosyl diglyceride - DGDG digalactosyl diglyceride - 16:0 palmatic acid - 18:0 stearic acid - 18:1 oleic acid - 18:2 linoleic acid - 18:3 linolenic acid - trans-16:1 3-trans-hexadecenoic acid  相似文献   

3.
Two breeding lines of “zero-erucic-acid” rapeseed (Brassica napus) were grown in climate chambers at a constant night temperature (12°C) and constant photoperiod (16 hours) but with different day temperatures (15, 20 and 25°C). Samples of leaves, siliques and immature seeds were analysed for total fatty acid pattern. The content of different acyl lipids and the fatty acid pattern of these lipids were also determined in some of the samples by use of preparative TLC followed by GLC of the fatty acids. The mature seeds produced by ten plants of each selection in each climate were analysed separately for total fatty acid composition. Mono- and digalactosyl diglycerides (MGDG, DGDG) were the predominant acyl lipids in leaves and siliques. In developing seeds they also were more abundant than the phospholipids, but in this case the neutral lipids, mainly triacylglycerols, contained about 95% of the total fatty acids. Large variations were found in the fatty acid composition of monogalactosyl diglyceride and digalactosyl diglyceride, isolated from leaves, siliques and immature seeds. The palmitic acid content of leaf MGDG was about 15 %, atypically high for MGDG from photosynthetic tissue. The linolenic acid content of the MGDG was about 45 %, 30 % and 10 % in the leaf, silique and seed tissues respectively. A hexadecatrienoic acid (16: 3) was found almost exclusively in the MGDG samples of leaves, siliques and immature seeds (about 25 %, 10 % and 3 % 16:3 respectively). The lipids of siliques — mainly photosynthetising tissue — were different from those of leaves and had especially high contents of stearic acid (6–12 % in the different lipids). For all lipid classes studied, leaves grown at the lowest day temperature had a slightly lower oleic and higher linolenic acid content than those grown at the highest temperature. On the other hand, increasing the day temperature caused a decreased level of oleic, an increased level of linoleic and an essentially unchanged level of linolenic acids in the mature seeds from both selections.  相似文献   

4.
The fatty acid composition of the major lipids of the chloroplast membranes, the mono- and digalactosyl diglycerides, can be definably altered with various substituted pyridazinones. Galactolipid fatty acid composition of wheat (Triticum aestivum L.) can be altered so that there is a decrease in linolenic acid accompanied by an increase in linoleic acid without a shift in the relative proportion of saturated to unsaturated fatty acids; the fatty acid composition can be shifted toward a higher proportion of saturated fatty acids; or the fatty acid composition of the monogalactosyl diglycerides can be altered in preference to the digalactosyl diglycerides. Also, the light-mediated parallel accumulation of chlorophyll and linolenic acid can be separated with a substituted pyridazinone. The substituted pyridazinones may be useful tools in clarifying the role the galactolipids and their component fatty acids play in the structure and function of chloroplast membranes in higher plants.  相似文献   

5.
Soybean (Glycine max [L.] Merr. var. Glabrous D62-7812) plants were grown in aerated Hoagland and Arnon mineral nutrient solution containing 0 or 2.6 mum S-ethyl dipropylthiocarbamate (EPTC) in a growth chamber. After 19 days exposure to EPTC, total leaf fresh weight was reduced 18% by 2.6 mum EPTC while total leaf fatty acid content was reduced 63%. Galactolipid content decreased while phospholipid content increased. Linolenic acid content decreased from 67.5% of the leaf total fatty acid content to 31.5% with 2.6 mum EPTC treatment. Equivalent increases were observed in palmitic (+6.3%), stearic (+1.1%), oleic (14.4%), and linoleic (+13.9%) acids.  相似文献   

6.
Primary leaves of Phaseolus vulgaris show concomitant changes in phospholipid, galactolipid, chlorophyll and fresh weight during leaf development from 3 to 32 days after planting. Phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl inositol show only small changes on a mole per cent lipid phosphate basis during leaf development. The chloroplast lipids, phosphatidyl glycerol, monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) all show marked increases and decreases which are coincident with chloroplast development. The decline in the leaf content of chloroplast polar lipids and chlorophyll become evident upon reaching maximal leaf size. The molar ratio of galactolipids (MGDG/DGDG), reaches a maximum value of 2.3 in expanding leaves, but steadily declines during senescence to a minimum value of 1.5 at abscission. The declining ratio is caused by a preferential loss of MGDG in the senescing leaves.  相似文献   

7.
Bolton  P.  Harwood  J. L. 《Planta》1978,138(3):223-228
Fatty acid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivium L.) leaves. The basal regions of the leaves had the lowest rates of fatty acid synthesis and accumulated small amounts of very long chain fatty acids. Fatty acid synthesis was highest in the middle leaf sections in all four plants. Linolenic acid synthesis from [1-14C]acetate was highest in the distal leaf sections of rye grass. The labelling of the fatty acids of individual lipids of rye grass was examined and it was found that [14C]linolenic acid was highest in the galactolipids. Synthesis of this acid in the galactolipids was most active in leaf segment C. Only traces of [14C]linolenic acid were ever found in phosphatidylcholine and it is concluded that this phospholipid cannot serve as a substrate for linoleic acid desaturation in rye grass. The synthesis of fatty acids was sensitive to arsenite, fluoride and the herbicide EPTC. The latter was only inhibitory towards those leaf segments which made very long chain fatty acids. Formation of fatty acids from [1-14C]acetate was also studied in chloroplasts prepared from successive leaf sections of rye grass. Chloroplasts isolated from the middle leaf sections had the highest activity. Palmitic and oleic acids were the main fatty acid products in all chloroplast preparations. Linolenic acid synthesis was highest in chlorplasts isolated from the distal leaf sections of rye grass.  相似文献   

8.
The lipid composition of chlorotic leaves of Pisum sativum L. cv. Kelvedon Wonder, developed under iron-deficiency was determined and compared to similar material developed under normal nutrient conditions. All lipid classes were affected by iron-deficiency but to different extents, and thylakoid lipids were more affected than non-thylakoid lipids. The most striking results concerned changes in the fatty acid content of the main polar lipids. The linolenic acid of the galactolipids decreased to the benefit of more saturated fatty acids, mainly linoleic acid. In phosphatidylglycerol, the proportion of Δ3- trans -hexadecenoic acid decreased. Using radioactive acetate, lipid synthesis was investigated. Desaturation leading to linoleic acid was less affected by iron-deficiency than desaturation leading to Δ3- trans -hexadecenoic and linolenic acids.  相似文献   

9.
The lipid composition of tubers from the potato varieties Bintje and Desirée was investigated during storage. Storage in total dark ness after harvest gave only small changes in the amounts of triglycerides. monogalactosyl diglycerides and digalactosyl digtycerides. Storage in light resulted in changes in these lipids and in their fatty acid composition. The absolute amount and the relative content of linolenic acid in the galactolipids increased. A simultaneous and equivalent decrease in the percentage of linoleic acid took place without any marked percentage changes in the other major fatty acids. The light induced changes of the lipids, which occur simultaneously with greening of the tuber, are discussed and related to the development of thylakoid membrane systems in the plastids.  相似文献   

10.
The relationship between chilling tolerance of six rice cultivars – Facagro 57, Facagro 76, Fujisaka 5, Kirundo 3, Kirundo 9 and IR64 -and the fatty acid composition in total lipids, phospholipids, galactolipids and neutral lipids from leaves was studied. Higher double bond index and proportions of linolenic acid in the phospholipid and galactolipid classes were related to cultivar chilling tolerance, but this was not so for the total lipids nor the neutral lipid class. The somaclonal families derived from Facagro 76, Kirundo 3 and Kirundo 9 that showed enhanced chilling tolerance as compared to their original parental cultivar were analyzed for fatty acid composition in phospholipids and galactolipids from leaves. Altered proportions in fatty acid composition in phospholipids, galactolipids or both were found in the somaclonal families derived from Facagro 76 and Kirundo 9, but not from Kirundo 3. These changes most usually resulted in higher double bond index and higher proportions in linoleic and linolenic acids which were related either to lower ratio of C16 to C18 fatty acids or to higher unsaturation in the C18 fatty acid fraction. Different mechanisms thus seem to be implicated in the altered fatty acid composition of somaclones, which may be related to the chilling tolerance improvement of some somaclonal families.  相似文献   

11.
We investigated 2,4-D-induced leaf senescence in young mustard seedlings. A set of morphometric, biochemical and molecular parameters were analyzed to characterize senescence markers. In accordance with earlier reports, chloroplast-membrane degradation marked the early phase of leaf senescence based on the analysis of the galactolipid fraction. Degradation of grana occurred earlier to that of the envelope, as revealed by the relative level of their specific galactolipids, namely, monogalactosyl diglyceride and digalactosyl diglyceride. Phospholipids showed extensive degradation resulting in the accumulation of lyso-derivatives of major phospholipids and phosphatidic acid (PA) in senescing leaves. Catalase activity was stimulated by 2,4-D and reflected scavenging of reactive oxygen species. Nuclear DNA degradation, a previously known death signal that represented a point of no return from progression of senescence, occurred late on the 4th day subsequent to 2,4-D supplementation. AgNO3, an inhibitor of ethylene biosynthesis, inhibited leaf senescence by ca. 54% based on PA content Involvement of 2,4-D, ethylene and abscisic acid in leaf senescence is discussed in relation to hormonal interplay.  相似文献   

12.
Galactolipids and phospholipids rapidly accumulated in a whole seed between 2 and 4 days after germination. However, the rate of incorporation of [14C] acetate into galactolipids was very low. The predominant fatty acid of galactolipids was linolenic acid, while those of phospholipids were linoleic and palmitic acids. Fatty acids of monogalactosyldiacylglycerol in germinating safflower seeds were randomly distributed between the 1 - and 2-positions of the glycerol molecule and the distribution in digalactosyldiacylglycerol was slightly non-random, while fatty acids of galactolipids in mature safflower leaves were non-randomly distributed. Triacylglycerol was synthesized in the cotyledon tissue of the germinating seeds simultaneously with its rapid degradation. In addition, lipid biosynthesis in protoplasts is described.  相似文献   

13.
Z. Kaniuga  W. Michalski 《Planta》1978,140(2):129-136
The composition of free fatty acids (FFA) in relation to Hill reaction activity and photoperoxidation of lipids was studied in chloroplasts isolated from fresh, cold and dark-stored as well as illuminated leaves of Lycopersicon esculentum Mill., Phaseolus vulgaris L. and Cucumis sativus L. Following the cold and dark-storage of leaves the loss of Hill reaction activity is accompanied by approximately a 5-fold increase in the amount of FFA and by an increase in the percentage of unsaturated FFA, particularly that of linolenic acid. Illumination of the cold- and dark-stored leaves restores both Hill reaction activity and the content and composition of chloroplast FFA. Following the second and third cycles of cold storage and illumination of leaves the percentage of unsaturated fatty acids in chloroplasts increases while that of saturated ones decreases despite of the significant restoration of Hill reaction activity. Since the illumination of cold-stored leaves results in peroxidation of inhibitory fatty acids it seems likely that this phenomenon could, at least partially, be responsible for the restoration of Hill reaction activity. Inhibition of Hill reaction activity by exogenous linolenic acid in chloroplasts of fresh, cold-stored as well as cold-stored and illuminated leaves could be reversed following the incubation of chloroplast suspension with BSA, however only to a value measured in the absence of unsaturated fatty acid. All these results indicate that the inhibition of Hill reaction activity due to the cold and dark storage of leaves is caused by both inhibitory FFA released from chloroplast lipids as well as by damage to the thylakoid structure affecting the electron transport within photosystem II.Abbreviations BSA bovine serum albumin - DCIP 2,6-dichlorophenolindophenol - DGDG digalactosyl diglyceride - HEPES 2-(4(2-hydroxyethyl)-piperazinyl) ethanesulfonic acid - FFA free fatty acids - MDA malondialdehyde - MGDG monogalactosyldiglyceride - TBA thiobarbituric acid - Tris tris-(Hydroxymethyl)aminomethane  相似文献   

14.
Trigalactosyl diglyceride has been isolated from tubers of potato (Solanum tuberosum) by a combination of chromatographic methods. This galactolipid, which constitutes approximately 1% by weight of the total lipids, was characterized by analysis of the intact lipid and its deacylation product. The fatty acids:glycerol:galactose molar proportions were shown to be close to 2:1:3. Evidence was obtained that suggests that trigalactosyl diglyceride is a higher homologue of mono- and di-galactosyl diglycerides and contains an additional d-galactopyranosyl moiety that is linked alpha-(1-->6) to the terminal galactose unit of digalactosyl diglyceride.  相似文献   

15.
Substrate for an endogenous oxidation in homogenates of leaves of bean (Phaseolus vulgaris) was traced to two fractions of lipids, each representing less than 2% of the dry weight of leaves. The substrate lipids, tentatively identified as galactosyl diglycerides, yielded linolenic and linoleic acids on acid hydrolysis. Amounts of linolenic acid in total lipids in resistant and susceptible leaves were similar. Amounts of free linolenic acid in resistant leaves increased eightfold to 408.6 μg and in susceptible leaves fourfold to 130.6 μg/g fresh leaf after homogenization and incubation for 16 min at 4 °C. These quantities are sufficient to account during their lipoxidation for the previously reported oxygen uptakes in homogenates. Differences between resistant and susceptible leaves were traced to the activities of lipase systems which liberate linolenic acid from substrate lipids.  相似文献   

16.
The formation of chloroplasts in dark-grown cells of Euglena gracilis was induced by exposing the cells to constant illumination. Following a lag, the cells accumulated chlorophyll and galactosyl diglycerides simultaneously at almost linear rates. The monogalactosyl diglyceride content rose from approximately 2 micromoles in 100 mg of dark-grown cells to 27 micromoles in fully green cells; the digalactosyl diglyceride content increased from 1 micromole to 11 micromoles. The digalacto compounds increased more rapidly than the monogalacto compounds at first, but their rate of accumulation began to diminish long before greening of the cell was complete. The sole exception was the digalactosyl diglyceride fraction that contained hexadecadienoic (16:2) fatty acid. This fraction increased continuously during greening. As accumulation of the digalacto compounds diminished, that of the monogalacto compounds increased. Towards the end of greening, the major fatty acids were 16:2, 16:3, 16:4, 18:2, and 18:3 in the monogalacto and 16:2 in the digalacto compounds. The results of this study suggest that monogalactosyl and digalactosyl diglycerides that contain particular fatty acid components have a function in the assembly of chloroplasts.  相似文献   

17.
Methyl Jasmonate Reduces Water Stress in Strawberry   总被引:15,自引:0,他引:15  
The effect of methyl jasmonate (MJ) on changes of oxygen-scavenging enzyme activities and membrane lipid composition was studied in strawberry leaves under water stress. Under water stress, MJ treatment reduced the increase of peroxidase (EC 1.11.1.7; POD) activity, maintained higher catalase (EC 1.11.1.6; CAT) and superoxide dismutase (EC 1.15.1.1; SOD) activities, and ascorbic acid content. In addition, MJ treatment reduced transpiration and membrane-lipid peroxidation as expressed by malondialdehyde (MDA) content, lessened the reduction of membrane lipids, glycolipids [monogalactosyl diglyceride (MGDG), digalactosyl diglyceride (DGDG)], and phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI)]. In water-deficit conditions, MJ treatment also alleviated the decline in the degree of fatty acid unsaturation and the ratio of linolenic (18:3) to linoleic acid (18:2). These results indicate that MJ treatment appears to alter the metabolism of strawberry plants rendering the tissue better able to withstand water stress. Received June 16, 1999; accepted October 1, 1999  相似文献   

18.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

19.
This investigation was conducted to observe changes in the fatty acid distributions of glycolipids (GL) and phospholipids (PL) in cotyledons of soybean seeds which were germinated either in the dark or the light at 28°C for 8 days. The GL isolated from the total lipids of cotyledons at different germinating stages were : acyl sterylglycoside (ASG), monogalactosyl diglyceride (MGD), digalactosyl diglyceride (DGD) and sulfolipid (SL). The PL isolated from the same total lipids as described above were : diphosphatidyl glycerol (DPG), phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidyl glycerol (PG), phosphatidyl choline (PC) and phosphatidyl inositol (PI).

During germination of soybean seeds, the content of linoleic and linolenic acids in MGD or DGD was markedly higher than that of the other GL. The positional distribution of fatty acids in PE, PC and PI was shown in all PL, in which saturated fatty acids, especially palmitic acid, were highly concentrated in position 1 and unsaturated fatty acids, especially linoleic acid, mainly occupied position 2. A remarkable difference in the changing patterns of fatty acid composition, which depended on the germinating conditions tested, was observed between GL and PL. The changes in fatty acid composition of GL were more marked in the light-grown seedlings than in the dark-grown, whereas those of PL were more remarkable in the latter than in the former. Therefore, the positional distribution of fatty acids in PL was more evident in the light-grown seedlings than in the dark-grown ones.

These results suggest the metabolic fate of GL and PL in cotyledons of soybean seeds, probably owing to the differences in the two germinating conditions tested.  相似文献   

20.
The major glycolipids in the fully developed and young needle tissues of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) were monogalactosyl diglyceride (MGDG) digalactosyl diglyceride (DGDG), and sulphoquinovosyl diglyceride (SQDG). The concentration of these glycolipids was considerably higher in the fully developed needles than in the young needles. The major fatty acid in the MGDG fraction (from both tissues) and DGDG fraction (from fully developed tissues) was linolenic acid. However, palmitic acid was the major fatty acid in the DGDG fraction from the young tissues and the SQDG fraction from both tissues. Treatment of needles with aq. SO2 solutions produced marked changes in the concentration and composition of these glycolipid fractions. At 100 ppm, SO2 produced a considerable drop in the linolenic acid content of all glycolipid fractions, more pronounced in the young needles than in the fully developed ones. SO2 also had an effect on the release of soluble sugars from the needle tissues of both ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号