首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) (derived from fish or corn oil, respectively) on the expression of mRNA for four genes involved in the regulation of the synthesis, assembly, and secretion of very-low-density lipoprotein (VLDL) in the liver was investigated in normal rat hepatocytes and after manipulation of the cellular oxidative state by incubation with N-acetyl cysteine (NAC) or CuSO(4). The four genes investigated were those encoding apolipoprotein B (apoB), the microsomal triacylglycerol transfer protein (MTP), and the enzymes acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2), which play a role in the regulation of triacylglycerol and cholesteryl ester synthesis, respectively. mRNA levels for apoB, MTP, and DGAT were unaffected by either fish or corn oil chylomicron remnants, but the amount of ACAT2 mRNA was significantly reduced after incubation of the hepatocytes with fish oil remnants as compared with corn oil remnants or without remnants. These findings indicate that the delivery of dietary n-3 PUFA to hepatocytes in chylomicron remnants downregulates the expression of mRNA for ACAT2, and this may play a role in their inhibition of VLDL secretion. However, when the cells were shifted into a pro-oxidizing or pro-reducing state by pretreatment with CuSO(4) (1 mM) or NAC (5 mM) for 24 hr, levels of mRNA for MTP were increased by about 2- or 4-fold, respectively, by fish oil remnants, whereas corn oil remnants had no significant effect. Fish oil remnants also caused a smaller increase in apoB mRNA in comparison with corn oil remnants in NAC-treated cells (+38%). These changes would be expected to lead to increased VLDL secretion rather than the decrease associated with dietary n-3 PUFA in normal conditions. These findings suggest that relatively minor changes in cellular redox levels can have a major influence on important liver functions such as VLDL synthesis and secretion.  相似文献   

2.
The aim of this work was to characterise the lipid and fatty acid composition of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) and to investigate their influence on the fatty acid profiles of the lipids of rat hepatocytes cultured in monolayers. Chylomicrons were prepared from the lymph collected from the thoracic duct of rats given an oral dose of fish or corn oil (high in n-3 and n-6 PUFA, respectively), and remnants were prepared in vitro from such chylomicrons using rat plasma containing lipoprotein lipase. The fatty acids predominating in the oils abounded also in their respective chylomicrons and remnants, especially in triacylglycerols. Chylomicrons as well as remnants contained small amounts of phospholipids and long-chain PUFA that were minor in, or absent from, the dietary oils, evidently provided by the intestinal epithelium. The incubation of hepatocytes for 6 h, with either n-3 or n-6 PUFA-rich remnants (0.25-0.75 mM triacylglycerol) resulted in a dose-dependent increase in the amount of triacylglycerols and phospholipids in the cells, which was not affected further by increasing the incubation time to 19 h. Whereas hepatocyte triacylglycerols mostly incorporated the PUFA predominating in each remnant type, the fatty acid profile of cell phospholipids was virtually unchanged. In addition, irrespective of whether they were enriched in n-3 or n-6 PUFA, remnants promoted a relative decrease in the amount of cholesteryl esters, a minor hepatocyte lipid class poor in PUFA. The results demonstrate that the hepatocyte fatty acid profile is modulated in a lipid-class specific way by the amount and type of dietary PUFA delivered to cells in chylomicron remnants.  相似文献   

3.
4.
The influence of chylomicron remnants on lipid accumulation and synthesis and the activity and/or expression of mRNA for some of the key enzymes involved was investigated in the murine macrophage cell line J774. The effects of varying the polyunsaturated fatty acid (PUFA) composition and oxidation state of the remnants were also examined. Chylomicron remnants derived from corn oil (rich in n-6 PUFA) or fish oil (rich in n-3 PUFA) were prepared in vivo and oxidised by incubation with CuSO(4). The native and oxidised remnants caused a marked rise in intracellular triacylglycerol levels, but the rise induced by corn oil remnants (four- to sixfold) was greater than that observed with fish oil remnants (<2-fold). Triacylglycerol synthesis, as measured by the incorporation of [3H]oleate and [3H]glycerol into cellular triacylglycerol, was increased by all four remnant types tested, and corn oil remnants had a significantly greater effect than fish oil remnants. Oxidation of the remnants did not affect the results obtained. Although the incorporation of [3H]oleate into cholesteryl ester by the cells was not significantly changed by any of the four types of remnants tested, the activity and expression of mRNA for acyl Co-enzyme A: cholesterol acyltransferase (ACAT) was increased by corn oil, but not by fish or oxidised corn, remnants. Neutral cholesteryl ester hydrolase (nCEH) activity, however, was also raised by corn oil remnants. These studies indicate that chylomicron remnants induce the accumulation of triacylglycerol in J774 macrophages, and that increased synthesis of triacylglycerol plays a major role in this process. Furthermore, they demonstrate that these effects are enhanced when the remnants are enriched in n-6 PUFA as compared with n-3 PUFA, but not after oxidation of the particles, suggesting that the fatty acid composition of chylomicron remnants may be more important than their oxidation state in their ability to induce foam cell formation.  相似文献   

5.
We determined the effects of dietary n-6 and n-3 polyunsaturated fatty acids (PUFA) on parameters of plasma lipoprotein and hepatic lipid metabolism in LDL receptor (LDLr) knockout mice. Dietary n-3 PUFA decreased the rate of appearance and increased the hepatic clearance of IDL/LDL resulting in a marked decrease in the plasma concentration of these particles. Dietary n-3 PUFA increased the hepatic clearance of IDL/LDL through a mechanism that appears to involve apolipoprotein (apo)E but is independent of the LDLr, the LDLr related protein (LRP), the scavenger receptor B1, and the VLDLr. The decreased rate of appearance of IDL/VLDL in the plasma of animals fed n-3 PUFA could be attributed to a marked decrease in the plasma concentration of precursor VLDL. Decreased plasma VLDL concentrations were due in part to decreased hepatic secretion of VLDL triglyceride and cholesteryl esters, which in turn was associated with decreased concentrations of these lipids in liver. Decreased hepatic triglyceride concentrations in animals fed n-3 PUFA were due in part to suppression of fatty acid synthesis as a result of a decrease in sterol regulatory element binding protein-1 (SREBP-1) expression and processing. In conclusion, these studies indicate that n-3 PUFA can markedly decrease the plasma concentration of apoB-containing lipoproteins and enhance hepatic LDL clearance through a mechanism that does not involve the LDLr pathway or LRP.  相似文献   

6.
Polyunsaturated fatty acids (PUFA) n-3 inhibit inflammation, in vivo and in vitro in keratinocytes. We examined in HaCaT keratinocyte cell line whether eicosapentaenoic acid (EPA) a n-3 PUFA, gamma-linoleic acid (GLA) a n-6 PUFA, and arachidic acid a saturated fatty acid, modulate expression of cyclooxygenase-2 (COX-2), an enzyme pivotal to skin inflammation and reparation. We demonstrate that only treatment of HaCaT with GLA and EPA or a PPARgamma ligand (roziglitazone), induced COX-2 expression (protein and mRNA). Moreover stimulation of COX-2 promoter activity was increased by those PUFAs or rosiglitazone. The inhibitory effects of GW9662 and T0070907 (PPARgamma antagonists), on COX-2 expression and on stimulation of COX-2 promoter activity by EPA and GLA suggest that PPARgamma is implicated in COX-2 induction. Finally, PLA2 inhibitor methyl arachidonyl fluorophosphonate blocked the PUFA effects on COX-2 induction, promoter activity and arachidonic acid mobilization suggesting involvement of AA metabolites in PPAR activation. These findings demonstrate that n-3 and n-6 PUFA increased PPARgamma activity is necessary for the COX-2 induction in HaCaT human keratinocyte cells. Given the anti-inflammatory properties of EPA, we suggest that induction of COX-2 in keratinocytes may be important in the anti-inflammatory and protective mechanism of action of PUFAs n-3 or n-6.  相似文献   

7.
The binding and internalization of (125)I-labelled chylomicron remnants derived from palm, olive, corn, or fish oil (rich in saturated, monounsaturated, n-6, or n-3 polyunsaturated fatty acids, respectively) by hepatocytes from rats fed a low-fat diet or a diet supplemented with the corresponding fat for 21 days was investigated. In hepatocytes from rats fed the low-fat diet, the association of radioactivity with the cells at 4 degrees C (a measure of initial binding only) was similar with all types of remnants tested, but was more rapid at 37 degrees C (a measure of binding plus internalization) when fish oil, as compared to olive, corn or palm oil remnants, was used, and similar differences in the internalization of the particles were observed. In contrast, when hepatocytes from rats fed the fat-supplemented diets were used, the rate of association at 37 degrees C of remnants with cells from rats fed palm, corn or fish oil was similar, and higher than that found with cells from animals fed olive oil, and in this case these differences were mainly due to changes in the binding of the particles to the cells at 4 degrees C. Both excess low-density lipoprotein (LDL), which inhibits remnant uptake by the LDL receptor, and lactoferrin, which blocks the LDL receptor-related protein (LRP), were found to decrease the association of the remnants with cells from rats fed the low-fat and high-fat diets. However, in hepatocytes from animals given the low-fat diet, most of the differences between the various types of particle were retained in the presence of lactoferrin, but abolished in the presence of LDL. In contrast, in cells from rats fed the high-fat diets, the differences were reduced by both lactoferrin and LDL. These findings demonstrate that the hepatic uptake of chylomicron remnants is influenced both by the fatty acid composition of the particles, and by longer-term adaptive changes in liver tissue, and suggest that the former effects are mediated mainly by the LDL receptor, while the latter may involve both the LDL receptor and the LRP.  相似文献   

8.
The hydrolysis of chylomicrons enriched in long-chain n-3 fatty acids by cardiac lipoprotein lipase was studied. In 60 min, 24.8% of the triacylglycerol fatty acids were released as free fatty acids. The fatty acids were hydrolyzed at different rates. DHA (docosahexaenoic acid, 22:6n-3) and EPA (eicosapentaenoic acid, 20:5n-3) were released at rates significantly less than average. Stearic acid (18:0), 20:1n-9, and alpha-linolenic acid (18:3n-3) were released significantly faster than average. There was no relationship between the rate of release of a fatty acid and the number of carbons or the number of double bonds. Lipoprotein lipase selectively hydrolyzes the fatty acids of chylomicron triacylglycerols. This selectively will result in remnants that are relatively depleted in 18:0, 20:1, and 18:3 and relatively enriched in 20:5 and 22:6.  相似文献   

9.
The effects of native and oxidized chylomicron remnants on lipid synthesis in normal and oxidatively stressed liver cells were investigated using MET murine hepatocytes (MMH cells), a nontransformed mouse hepatocyte cell line that maintains a highly differentiated hepatic phenotype in culture. Lipid synthesis was determined by measuring the incorporation of [(3)H]oleate into cholesteryl ester, triacylglycerol, and phospholipid by the cells. The formation of cholesteryl ester and phospholipid was decreased by chylomicron remnants in a dose-dependent manner, while triacylglycerol synthesis was increased. Exposure of MMH cells to mild oxidative stress by incubation with CuSO(4) (2.5 microM) for 24 h led to significantly increased incorporation of [(3)H]oleate into triacylglycerol and phospholipid, but not cholesteryl ester, in the absence of chylomicron remnants. In the presence of the lipoproteins, however, similar effects to those found in untreated cells were observed. Oxidatively modified chylomicron remnants prepared by incubation with CuSO(4) (10 microM, 18 h, 37 degrees C) did not influence cholesteryl ester or phospholipid synthesis in MMH cells, but had a similar effect to that found with native remnants on triacylglycerol synthesis. These findings show that hepatic lipid metabolism is altered by exposure to mild oxidative stress and by lipids from the diet delivered to the liver in chylomicron remnants, and these effects may play a role in the development of atherosclerosis.  相似文献   

10.
Rat ovarian granulosa rely heavily on lipoprotein-derived cholesterol for steroidogenesis, which is principally supplied by the LDL receptor- and scavenger receptor class B type I (SR-BI)-mediated pathways. In this study, we characterized the hormonal and cholesterol regulation of another member of the LDL receptor superfamily, low density lipoprotein receptor-related protein (LRP), and its role in granulosa cell steroidogenesis. Coincubation of cultured granulosa cells with LDL and N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate (Bt2cAMP) greatly increased the mRNA/protein levels of LRP. Bt2cAMP and Bt2cAMP plus human hLDL also enhanced SR-BI mRNA levels. However, there was no change in the expression of receptor-associated protein, a chaperone for LRP, or another lipoprotein receptor, LRP8/apoER2, in response to Bt2cAMP plus hLDL, whereas the mRNA expression of LDL receptor was reduced significantly. The induced LRP was fully functional, mediating increased uptake of its ligand, alpha2-macroglobulin. The level of binding of another LRP ligand, chylomicron remnants, did not increase, although the extent of remnant degradation that could be attributed to the LRP doubled in cells with increased levels of LRP. The addition of lipoprotein-type LRP ligands such as chylomicron remnants and VLDL to the incubation medium significantly increased the progestin production under both basal and stimulated conditions. In summary, our studies demonstrate a role for LRP in lipoprotein-supported ovarian granulosa cell steroidogenesis.  相似文献   

11.
The influence of the fatty acid composition of chylomicron remnant-like particles (CRLPs) on their uptake and induction of lipid accumulation in macrophages was studied. CRLPs containing triacylglycerol enriched in saturated, monounsaturated, n-6 or n-3 polyunsaturated fatty acids derived from palm, olive, corn or fish oil, respectively, and macrophages derived from the human monocyte cell line THP-1 were used. Lipid accumulation (triacylglycerol and cholesterol) in the cells was measured after incubation with CRLPs for 5, 24 and 48 h, and uptake over 24 h was determined using CRLPs radiolabelled with [3H]triolein. Total lipid accumulation in the macrophages was significantly greater with palm CRLPs than with the other three types of particle. This was mainly due to increased triacylglycerol concentrations, whereas changes in cholesterol concentrations did not reach significance. There were no significant differences in lipid accumulation after incubation with olive, corn or fish CRLPs. Palm and olive CRLPs were taken up by the cells at a similar rate, which was considerably faster than that observed with corn and fish CRLPs. These findings demonstrate that CRLPs enriched in saturated or monounsaturated fatty acids are taken up more rapidly by macrophages than those enriched in n-6 or n-3 polyunsaturated fatty acids, and that the faster uptake rate results in greater lipid accumulation in the case of saturated fatty acid-rich particles, but not monounsaturated fatty acid-rich particles. Thus, dietary saturated fatty acids carried in chylomicron remnants may enhance their propensity to induce macrophage foam cell formation.  相似文献   

12.
13.
14.
The present study was undertaken to establish whether the formation of 22:6n-3 from 18:3n-3 and/or 20:5n-3 can occur in turbot liver and if this conversion is consistent with the operation of a Delta4 desaturase-independent pathway. At the same, time the effects of feeding a diet devoid of long chain polyunsaturated fatty acids (PUFA) on the patterns of esterification and modification of 18:3n-3, 20:5n-3 and 18:2n-6 by turbot hepatocytes and liver microsomes were examined. For this purpose, two groups of fish (25-30 g) were employed: one was fed a commercial diet containing fish oil (FO) and thus rich in long chain n-3 PUFA and the other was fed an experimental diet based on olive oil (OO). After 5 months of feeding, hepatocytes and liver microsomes isolated from individuals in the two groups of fish were incubated with [1-(14)C]-PUFA [either 18:3n-3, 20:5n-3 or 18:2n-6]. After 3 h of incubation, most radioactivity from all three radiolabelled substrates incorporated into lipids by hepatocytes and microsomes was recovered in the original substrate. The formation of desaturation products of n-3 radiolabelled substrates was higher in hepatocytes isolated from OO-fed than FO-fed fish. Small amounts of radiolabelled 22:6n-3 were formed from [1-(14)C]18:3n-3 and [1-(14)C]20:5n-3, but only by hepatocytes from fish fed OO, which also synthesised a small amount of radiolabelled 24:6n-3 from 14C-20:5n-3. Elongation products predominated over desaturation products in hepatic microsomes from both groups of fish studied, particularly in microsomes from fish fed FO. The results confirm that regardless of the long chain PUFA content of the diet, the production of 22:6n-3 in turbot liver from 18:3n-3 and/or 20:5n-3, and of 20:4n-6 from 18:2n-6, is very limited. The presence of radiolabelled 24:6n-3 in microsomes coupled with the absence of radiolabelled 22:6n-3 suggests that the formation of 22:6n-3 that does occur in turbot liver cells, may involve C24 intermediates and peroxisomal beta-oxidation.  相似文献   

15.
Female humans and rodents have been shown to have higher 22:6n-3 status and synthesis than males. It is unclear which sex hormone is involved. We investigated the specificity of the effects of physiological concentrations of sex hormones in vitro on the mRNA expression of genes involved in polyunsaturated fatty acid (PUFA) biosynthesis and on the conversion of [d5]-18:3n-3 to longer chain fatty acids. Progesterone, but not 17α-ethynylestradiol or testosterone, increased FADS2, FADS1, ELOVl 5 and ELOVl 2 mRNA expression in HepG2 cells, but only FADS2 in primary human hepatocytes. In HepG2 cells, these changes were accompanied by hypomethylation of specific CpG loci in the FADS2 promoter. Progesterone, not 17α-ethynylestradiol or testosterone, increased conversion of [d5]-18:3n-3 to 20:5n-3, 22:5n-3 and 22:6n-3. These findings show that progesterone increases n-3 PUFA biosynthesis by up-regulating the mRNA expression of genes involved in this pathway, possibly via changes in the epigenetic regulation of FADS2.  相似文献   

16.
In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3 d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3 d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion.  相似文献   

17.
18.
Remnant-like emulsions labeled with cholesteryl [(13)C]-oleate were prepared with lipid compositions similar to remnants derived from triacylglycerol-rich lipoproteins. When injected into the bloodstream of conscious mice, the remnant-like emulsions were metabolized in the liver leading to the appearance of (13)CO(2) in the breath. Previously, using this technique, we found that remnant metabolism was significantly impaired but not completely inhibited in mice lacking low density lipoprotein receptors (LDLr). We have now found in mice with non-functional low density lipoprotein receptor-related protein (LRP) that breath enrichment of (13)CO(2) was significantly decreased, indicating that the LRP also plays an important role in the metabolism of chylomicron remnants (CR). The enrichment of (13)CO(2) in the expired breath was negligible in mice lacking both LDLr and receptor-associated protein (-/-), essential for normal function of LRP. In mice pre-injected with gluthatione S-transferase-receptor-associated protein to block LRP binding, there was a marked inhibition of the appearance of (13)CO(2) in the expired breath of homozygous LDLr-deficient mice, supporting the role of LRP in vivo. Whether or not LDLr were present, in mouse and human fibroblast cells human apoE3 or E4 but not apoE2 were essential for binding of remnant-like emulsions, while lactoferrin and suramin completely inhibited binding. We conclude that in normal mice LDLr are important for the physiological metabolism of CR. When LDLr are absent the evidence supports a role for the LRP in the uptake of CR in liver cells and in fibroblasts, with binding characteristics for CR-associated apoE similar to LDLr.  相似文献   

19.
The brain cannot synthesize n-6 or n-3 PUFAs de novo and requires their transport from the blood. Two models of brain fatty acid uptake have been proposed. One requires the passive diffusion of unesterified fatty acids through endothelial cells of the blood-brain barrier, and the other requires the uptake of lipoproteins via a lipoprotein receptor on the luminal membrane of endothelial cells. This study tested whether the low density lipoprotein receptor (LDLr) is necessary for maintaining brain PUFA concentrations. Because the cortex has a low basal expression of LDLr and the anterior brain stem has a relatively high expression, we analyzed these regions separately. LDLr knockout (LDLr(-/-)) and wild-type mice consumed an AIN-93G diet ad libitum until 7 weeks of age. After microwaving, the cortex and anterior brain stem (pons and medulla) were isolated for phospholipid fatty acid analyses. There were no differences in phosphatidylserine, phosphatidylinositol, ethanolamine, or choline glycerophospholipid esterified PUFA or saturated or monounsaturated fatty acid concentrations in the cortex or brain stem between LDLr(-/-) and wild-type mice. These findings demonstrate that the LDLr is not necessary for maintaining brain PUFA concentrations and suggest that other mechanisms to transport PUFAs into the brain must exist.  相似文献   

20.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号