首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The purine-derived analogs, roscovitine and purvalanol are selective synthetic inhibitors of cyclin-dependent kinases (CDKs) induced cell cycle arrest and lead to apoptotic cell death in various cancer cells. Although a number of studies investigated the molecular mechanism of each CDK inhibitor on apoptotic cell death mechanism with their therapeutic potential, their regulatory role on autophagy is not clarified yet. In this paper, our aim was to investigate molecular mechanism of CDK inhibitors on autophagy and apoptosis in wild type (wt) and Bax deficient HCT 116 cells. Exposure of HCT 116 wt and Bax−/− cells to roscovitine or purvalanol for 24 h decreased cell viability in dose-dependent manner. However, Bax deficient HCT 116 cells were found more resistant against purvalanol treatment compared to wt cells. We also established that both CDK inhibitors induced apoptosis through activating mitochondria-mediated pathway in caspase-dependent manner regardless of Bax expression in HCT 116 colon cancer cells. Concomitantly, we determined that purvalanol was also effective on autophagy in HCT 116 colon cancer cells. Inhibition of autophagy by 3-MA treatment enhanced the purvalanol induced apoptotic cell death in HCT 116 Bax−/− cells. Our results revealed that mechanistic action of each CDK inhibitor on cell death mechanism differs. While purvalanol treatment activated apoptosis and autophagy in HCT 116 cells, roscovitine was only effective on caspase-dependent apoptotic pathway. Another important difference between two CDK inhibitors, although roscovitine treatment overcame Bax-mediated drug resistance in HCT 116 cells, purvalanol did not exert same effect.  相似文献   

2.
Human colon carcinoma cells HCT116 that lack transforming growth factor beta (TGF-beta) type II receptor (RII) demonstrated restoration of autocrine TGF-beta activity upon reexpression of RII without restoring inhibitory responses to exogenous TGF-beta treatment. RII transfectants (designated RII Cl 37) had a longer lag phase relative to NEO-transfected control cells (designated NEO pool) before entering exponential growth in tissue culture. The prolonged growth arrest of RII Cl 37 cells was associated with markedly reduced cyclin-dependent kinase (CDK)2 activity. Our results demonstrate that p21 induction by autocrine TGF-beta is responsible for reduced CDK2 activity, which at least partially contributes to prolonged growth arrest and reduced cell proliferation in RII Cl 37 cells. In contrast to RII transfectants, HCT116 cells transfected with chromosome 3 (designated HCT116Ch3), which bears the RII gene, restored the response to exogenous TGF-beta as well as autocrine TGF-beta activity. Autocrine TGF-beta activity in HCT116Ch3 cells induced p21 expression as seen in RII Cl 37 cells; however, in addition to autocrine activity, HCT116Ch3 cells responded to exogenous TGF-beta as decreased CDK4 expression and reduced pRb phosphorylation mediated a TGF-beta inhibitory response in these cells. These results indicate that autocrine TGF-beta regulates the cell cycle through a pathway different from exogenous TGF-beta in the sense that p21 is a more sensitive effector of the TGF-beta signaling pathway, which can be induced and saturated by autocrine TGF-beta, whereas CDK4 inhibition is a less sensitive effector, which can only be activated by high levels of exogenous TGF-beta  相似文献   

3.
Since the early 2000s, the Aurora kinases have become major targets of oncology drug discovery particularly Aurora-A and Aurora-B kinases (AKA/AKB) for which the selective inhibition in cells lead to different phenotypes. In addition to targeting these Aurora kinases involved in mitosis, CDK1 has been added as a primary inhibition target in hopes of enhancing the cytotoxicity of our chemotypes harboring the pyrazolopyrimidine core. SAR optimization of this series using the AKA, AKB and CDK1 biochemical assays led to the discovery of the compound 7h which combines strong potency against the 3 kinases with an acceptable microsomal stability. Finally, switching from a primary amide to a two-substituted pyrrolidine amide gave rise to compound 15a which exhibited the desired AKA/CDK1 inhibition phenotype in cells but showed moderate activity in animal models using HCT116 tumor cell lines.  相似文献   

4.
Changes in the content of fructose-2,6-bisphosphate, a modulator of glycolytic flux, also affect other metabolic fluxes such as the non-oxidative pentose phosphate pathway. Since this is the main source of precursors for biosynthesis in proliferating cells, PFK-2/FBPase-2 has been proposed as a potential target for neoplastic treatments. Here we provide evidence that cells with a low content of fructose-2,6-bisphosphate have a lower energy status than controls, but they are also less sensitive to oxidative stress. This feature is related to the activation of the oxidative branch of the pentose phosphate pathway and the increased production of NADPH.  相似文献   

5.
1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells.  相似文献   

6.
为研究ASPP2对奥沙利铂诱导的结肠癌细胞系HCT116 p53+/+(野生型)凋亡及周期的影响.利用ASPP2(rAd-ASPP2)及p53腺病毒(rAd-p53)感染HCT116 p53+/+细胞,经奥沙利铂50 μmol/L诱导细胞凋亡及周期改变.Western印迹检测ASPP2及p53的表达水平;MTT法检测ASPP2腺病毒对奥沙利铂诱导的HCT116细胞活性的影响;Calcein/PI吸收试验检测细胞凋亡情况;流式细胞术分析细胞周期分布. 结果显示,ASPP2、p53共同过表达,或者ASPP2单独过表达均能增强奥沙利铂诱导的HCT116 p53+/+细胞增殖抑制,以及S期抑制并伴有细胞凋亡水平的升高;而无奥沙利铂诱导时,ASPP2对HCT116 p53+/+细胞的活性、细胞周期及细胞凋亡水平的影响无统计学意义. 上述结果表明,ASPP2能够增强奥沙利铂诱导HCT116 p53+/+细胞的增殖抑制、细胞周期抑制和细胞凋亡.  相似文献   

7.
Methoxylated chalcones bearing N-methylpiperidinyl substituents on ring A inhibited the growth of human tumour cell lines (MCF, HCT 116, and Jurkat) at IC50 values of <5 microM. Investigations on a representative member (12) showed that antiproliferative activity was linked to the disruption of the cell cycle at G1 and G2/M phases. The effect was concentration dependent and was evident at the approximate IC50 of 12. Down regulation of cell cycle regulatory components (CDK4, cyclin B, E2F, and phosphorylated Rb) were observed under similar conditions. Methoxylated chalcones without the piperidinyl substituent were found to exert equally potent and selective antiproliferative activity against HCT 116 tumour cells but did not interfere with cell cycle progression at their IC50 concentrations. The presence of the piperidinyl substituent in the chalcone template is proposed to lend specificity to the mechanism of antiproliferative activity, in addition to promoting a more desirable physicochemical profile.  相似文献   

8.
The tumor suppressor, retinoblastoma (Rb), is involved in both terminal mitosis and neuronal differentiation. We hypothesized that activation of the Rb pathway would induce cell cycle arrest in primary neural precursor cells, independent of the proposed function of cyclin-dependent kinases 4/6 (CDK4/6) to sequester the CIP/KIP CDK inhibitors (CKIs) p21 and p27 from CDK2. We expressed dominant negative adenovirus mutants of CDKs 2, 4, and 6 (dnCDK2, dnCDK4, and dnCDK6) in neural progenitor cells derived from E12.5 wild type and Rb-deficient mouse embryos. In contrast to previous studies, our results demonstrate that in addition to dnCDK2, the dnCDK4/6 mutants can induce growth arrest. Moreover, the dnCDK4/6-mediated inhibition is Rb-dependent. The dnCDK2 partially inhibited cell growth in Rb-deficient cells, suggesting that CDK2 may have additional targets. A previously proposed function of CDK4/6 is CKI sequestration, thereby preventing the resulting inhibition of CDK2, believed to be the key regulator of cell cycle. However, our immunoprecipitations revealed that the dominant negative CDK mutants could arrest cell growth despite their interaction with p21 and p27. Taken together, our results demonstrate that both CDK2 and CDK4/6 are crucial for cell cycle regulation. Furthermore, our data underscore the importance of the Rb regulatory pathway in neuronal development and cell cycle regulation, independent of CKI sequestration.  相似文献   

9.
10.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

11.
This study aims to investigate the mechanisms associated with the antiproliferation effect of guanosine on human colon carcinoma HCT 116 cells. In this study, guanosine induced more drastic cell cycle arrest effect than cell death effect on HCT 116 cells. The cell cycle arrest effect of guanosine on HCT 116 cells appeared to be associated with the increased activation of mitogen-activated protein kinases (MAPK) such as ERK1/2, p38 and JNK. The decrease of AMP-activated protein kinase (AMPK) activation and cyclin D1 expression was also involved. Thus, the antiproliferation of colon cancer cells of guanosine could be mediated by the disruption of MAPK and AMPK pathways.  相似文献   

12.
d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically 14C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase–transaldolase pathway. 2. From the correlation of the 14CO2 liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-14C]- and d-[6-14C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C2 fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO2: about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed.  相似文献   

13.
Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.  相似文献   

14.
By using inhibitors and stimulators of different metabolic pathways the interdependence of the pentose phosphate cycle and lipogenesis in isolated fat-cells was studied. Rotenone, which is known to inhibit electron transport in the respiratory chain, blocked glucose breakdown at the site of pyruvate dehydrogenase. Consequently, because of the lack of acetyl-CoA, fatty acid synthesis was almost abolished. A concomitant decrease in pentose phosphate-cycle activity was observed. Phenazine methosulphate stimulated pentose phosphate-cycle activity about five- to ten-fold without a considerable effect on fatty acid synthesis. The influence of rotenone on both the pentose phosphate cycle and lipogenesis could be overcome by addition of phenazine methosulphate, indicating that rotenone has no direct effect on these pathways. The decreased rate of the pentose phosphate cycle in the presence of rotenone therefore has to be considered as a consequence of decreased fatty acid synthesis. The rate of glucose catabolism via the pentose phosphate cycle in adipocytes appears to be determined by the requirement of NADPH for lipogenesis. Treatment of cells with 6-aminonicotinamide caused an accumulation of 6-phosphogluconate, indicating an inhibition of 6-phosphogluconate dehydrogenase. The rate of glucose metabolism via the pentose phosphate cycle as well as the rate of fatty acid synthesis, however, was not affected by 6-aminonicotinamide treatment and could still be stimulated by addition of insulin. Since even in cells from starved animals, in which the pentose phosphate-cycle activity is extremely low, no accumulation of 6-phosphogluconate was observed, it is concluded that the control of this pathway is achieved by the rate of regeneration of NADP at the site of glucose 6-phosphate dehydrogenase.  相似文献   

15.
16.
17.
1. The pentose phosphate pathway in Krebs ascites cells was investigated for regulatory reactions. For comparison, the glycolytic pathway was studied simultaneously. 2. Activities of the pentose phosphate pathway enzymes were low in contrast with those of the enzymes of glycolysis. The K(m) values of glucose 6-phosphate dehydrogenase for both substrate and cofactor were about four times the reported upper limit for the enzyme from normal tissues. Fructose 1,6-diphosphate and NADPH competitively inhibited 6-phosphogluconate dehydrogenase. 3. About 28% of the hexokinase activity was in the particulate fraction of the cells. The soluble enzyme was inhibited by fructose 1,6-diphosphate and ribose 5-phosphate, but not by 3-phosphoglycerate. The behaviour of the partially purified soluble enzyme in vitro in a system simulating the concentrations of ATP, glucose 6-phosphate and P(i) found in vivo is reported. 4. Kinetics of metabolite accumulation during the transient state after the addition of glucose to the cells indicated two phases of glucose phosphorylation, an initial rapid phase followed abruptly by a slow phase extending into the steady state. 5. Of the pentose phosphate pathway intermediates, accumulation of 6-phosphogluconate, sedoheptulose 7-phosphate and fructose 6-phosphate paralleled the accumulation of glucose 6-phosphate. Erythrose 4-phosphate reached the steady-state concentration by 2min., whereas the pentose phosphates accumulated linearly. 6. The mass-action ratios of the pentose phosphate pathway reactions were calculated. The transketolase reaction was at equilibrium by 30sec. and then progressively shifted away from equilibrium towards the steady-state ratio. The glucose 6-phosphate dehydrogenase was far from equilibrium at all times. 7. Investigation of the flux of [(14)C]glucose carbon confirmed the existence of an operative pentose phosphate pathway in ascites cells, contributing 1% of the total flux in control cells and 10% in cells treated with phenazine methosulphate. 8. The pentose phosphate formed by way of the direct oxidative route and estimated from the (14)CO(2) yields represented 20% of the total accumulated pentose phosphate, the other 80% being formed by the non-oxidative reactions of the pentose phosphate pathway. 9. The pentose phosphate pathway appears to function as two separate pathways, both operating towards pentose phosphate formation. Control of the two pathways is discussed.  相似文献   

18.
The initial and rate-limiting enzyme of the oxidative pentose phosphate shunt, glucose-6-phosphate dehydrogenase (G6PD), is inhibited by NADPH and stimulated by NADP(+). Hence, under normal growth conditions, where NADPH levels exceed NADP(+) levels by as much as 100-fold, the activity of the pentose phosphate cycle is extremely low. However, during oxidant stress, pentose phosphate cycle activity can increase by as much as 200-fold over basal levels, to maintain the cytosolic reducing environment. G6PD-deficient (G6PD(-)) cell lines are sensitive to toxicity induced by chemical oxidants and ionizing radiation. Compared to wild-type CHO cells, enhanced sensitivity to ionizing radiation was observed for G6PD(-) cells exposed to single-dose or fractionated radiation. Fitting the single-dose radiation response data to the linear-quadratic model of radiation-induced cytotoxicity, we found that the G6PD(-) cells exhibited a significant enhancement in the alpha component of radiation-induced cell killing, while the values obtained for the beta component were similar in both the G6PD(-) and wild-type CHO cell lines. Here we report that the enhanced alpha component of radiation-induced cell killing is associated with a significant increase in the incidence of ionizing radiation-induced apoptosis in the G6PD(-) cells. These data suggest that G6PD and the oxidative pentose phosphate shunt protect cells from ionizing radiation-induced cell killing by limiting the incidence of radiation-induced apoptosis. The sensitivity to radiation-induced apoptosis was lost when the cDNA for wild-type G6PD was transfected into the G6PD(-) cell lines. Depleting GSH with l-BSO enhanced apoptosis of K1 cells while having no effect in the G6PD(-) cell line  相似文献   

19.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.  相似文献   

20.
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD+, essential for cellular metabolism, energy production, and DNA repair. NAMPT has been extensively studied because of its critical role in these cellular processes and the prospect of developing therapeutics against the target, yet how it regulates cellular metabolism is not fully understood. In this study we utilized liquid chromatography-mass spectrometry to examine the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and serine biosynthesis in cancer cells and tumor xenografts. We show for the first time that NAMPT inhibition leads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the reduced availability of NAD+ for the enzyme. The attenuation of glycolysis results in the accumulation of glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting carbon overflow into the pentose phosphate pathway as evidenced by the increased intermediate levels. The attenuation of glycolysis also causes decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby reducing carbon flow into serine biosynthesis and the TCA cycle. Labeling studies establish that the carbon overflow into the pentose phosphate pathway is mainly through its non-oxidative branch. Together, these studies establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the central metabolic basis of NAMPT inhibition responsible for ATP depletion, metabolic perturbation, and subsequent tumor growth inhibition. These studies also suggest that altered metabolite levels in tumors can be used as robust pharmacodynamic markers for evaluating NAMPT inhibitors in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号