首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background, aim and scope

After China and India, Thailand is considered another emerging market for fuel ethanol in Asia. At present, ethanol in the country is mainly a fermentation/distillery product of cane molasses, although cassava and cane juice are considered other potential raw materials for the fuel. This study aims to evaluate the environmental impacts of substituting conventional gasoline (CG) with molasses-based gasohol in Thailand.

Materials and methods

The life cycle assessment (LCA) procedure carried out follows three interrelated phases: inventory analysis, characterization and interpretation. The functional unit for the comparison is 1 l gasoline equivalent consumed by a new passenger car to travel a specific distance.

Results

The results of the study show that molasses-based ethanol (MoE) in the form of 10% blend with gasoline (E10), along its whole life cycle, consumes less fossil energy (5.3%), less petroleum (8.1%) and provides a similar impact on acidification compared to CG. The fuel, however, has inferior performance in other categories (e.g. global warming potential, nutrient enrichment and photochemical ozone creation potential) indicated by increased impacts over CG.

Discussion

In most cases, higher impacts from the upstream of molasses-based ethanol tend to govern its net life cycle impacts relative to CG. This makes the fuel blend less environmentally friendly than CG for the specific conditions considered. However, as discussed later, this situation can be improved by appropriate changes in energy carriers.

Conclusions

The LCA procedure helps identify the key areas in the MoE production cycle where changes are required to improve environmental performance. Specifically, they are: (1) use of coal as energy source for ethanol conversion, (2) discharge of distillery spent wash into an anaerobic pond, and (3) open burning of cane trash in sugar cane production.

Recommendations and perspectives

Measures to improve the overall life cycle energy and environmental impacts of MoE are: (1) substituting biomass for fossil fuels in ethanol conversion, (2) capturing CH4 from distillery spent wash and using it as an energy supply, and (3) utilizing cane trash for energy instead of open burning in fields.  相似文献   

2.

Purpose

The production of bioethanol in Argentina is based on the sugarcane plantation system, with extensive use of agricultural land, scarce use of fertilizers, pesticides, and artificial irrigation, and burning of sugarcane prior to harvesting. The objective of this paper is to develop a life cycle assessment (LCA) of the fuel ethanol from sugarcane in Tucumán (Argentina), assessing the environmental impact potentials to identify which of them cause the main impacts.

Methods

Our approach innovatively combined knowledge about the main impact pathways of bioethanol production with LCA which covers the typical emission-related impact categories at the midpoint life cycle impact assessment. Real data from the Argentinean industry subsystems have been used to perform the study: S1—sugarcane production, S2—milling process, S3—sugar production, and S4—ethanol production from molasses, honey, or sugarcane juice.

Results and discussion

The results are shown in the three alternative pathways to produce bioethanol. Different impact categories are assessed, with global warming potential (GWP) having the highest impact. So, the production of 1 kg of ethanol from molasses emitted 22.5 kg CO2 (pathway 1), 19.2 kg CO2 from honey (pathway 2), and 15.0 kg CO2 from sugarcane juice (pathway 3). Several sensitivity analyses to study the variability of the GWP according to the different cases studied have been performed (changing the agricultural yield, including economic and calorific allocation in sugar production, and modifying the sugar price).

Conclusions

Agriculture is the subsystem which shows the highest impact in almost all the categories due to fossil fuel consumption. When an economic and calorific allocation is considered to assess the environmental impact, the value is lower than when mass allocation is used because ethanol is relatively cheaper than sugars and it has higher calorific value.  相似文献   

3.

Purpose

The main objective of this study is to expand the discussion about how, and to what extent, the environmental performance is affected by the use of different life cycle impact assessment (LCIA) illustrated by the case study of the comparison between environmental impacts of gasoline and ethanol form sugarcane in Brazil.

Methods

The following LCIA methods have been considered in the evaluation: CML 2001, Impact 2002+, EDIP 2003, Eco-indicator 99, TRACI 2, ReCiPe, and Ecological Scarcity 2006. Energy allocation was used to split the environmental burdens between ethanol and surplus electricity generated at the sugarcane mill. The phases of feedstock and (bio)fuel production, distribution, and use are included in system boundaries.

Results and discussion

At the midpoint level, comparison of different LCIA methods showed that ethanol presents lower impacts than gasoline in important categories such as global warming, fossil depletion, and ozone layer depletion. However, ethanol presents higher impacts in acidification, eutrophication, photochemical oxidation, and agricultural land use categories. Regarding to single-score indicators, ethanol presented better performance than gasoline using ReCiPe Endpoint LCIA method. Using IMPACT 2002+, Eco-indicator 99, and Ecological Scarcity 2006, higher scores are verified for ethanol, mainly due to the impacts related to particulate emissions and land use impacts.

Conclusions

Although there is a relative agreement on the results regarding equivalent environmental impact categories using different LCIA methods at midpoint level, when single-score indicators are considered, use of different LCIA methods lead to different conclusions. Single-score results also limit the interpretability at endpoint level, as a consequence of small contributions of relevant environmental impact categories weighted in a single-score indicator.  相似文献   

4.

Background, aim, and scope

Facing the threat of oil depletion and climate change, a shift from fossil resources to renewables is ongoing to secure long-term low carbon energy supplies. In view of the carbon dioxide reduction targets agreed upon in the Kyoto protocol, bioethanol has become an attractive option for one energy application, as transport fuel. Many studies on the LCA of fuel ethanol have been conducted, and the results vary to a large extent. In most of these studies, only one type of allocation is applied. However, the effect of allocation on outcomes is of crucial importance to LCA as a decision supporting tool. This is only addressed in a few studies to a limited extent. Moreover, most of the studies mainly focus on fossil energy use and GHG emissions. In this paper, a case study is presented wherein a more complete set of impact categories is used. Land use has been left out of account as only hectare data would be given which is obviously dominated by agriculture. Moreover, different allocation methods are applied to assess the sensitivity of the outcomes for allocation choices.

Materials and methods

This study focuses on the comparison of LCA results from the application of different allocation methods by presenting an LCA of gasoline and ethanol as fuels and with two types of blends of gasoline with ethanol, all used in a midsize car. As a main second-generation application growing fast in the USA, corn stover-based ethanol is chosen as a case study. The life cycles of the fuels include gasoline production, corn and stover agriculture, cellulosic ethanol production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85% of ethanol), and finally the use of gasoline, E10, E85, and ethanol. In this study, a substantially broader set of eight environmental impacts is covered.

Results

LCA results appear to be largely dependent on the allocation methods rendered. The level of abiotic depletion and ozone layer depletion decrease when replacing gasoline by ethanol fuels, irrespective of the allocation method applied, while the rest of the impacts except global warming potential are larger. The results show a reduction of global warming potential when mass/energy allocation is applied; in the case of economic allocation, it gives contrary results. In the expanded systems, global warming potential is significantly reduced comparing to the ones from the allocated systems. A contribution analysis shows that car driving, electricity use for cellulase enzyme production, and ethanol conversion contribute largely to global warming potential from the life cycle of ethanol fuels.

Discussion

The reason why the results of global warming potential show a reverse trend is that the corn/stover allocation ratio shifts from 7.5 to 1.7 when shifting from economic allocation to mass/energy allocation. When mass/energy allocation is applied, both more credits (CO2 uptake) and more penalties (N2O emission) in agriculture are allocated to stover compared to the case of economic allocation. However, more CO2 is taken up than N2O (in CO2 eq.) emitted. Hence, the smaller the allocation ratio is between corn and stover, the lower the share of the overall global warming emissions being allocated to ethanol will be. In the system expansion approach, global warming potentials are significantly reduced, resulting in the negative values in all cases. This implies that the system expansion results are comparable to one another because they make the same cutoffs but not really to the results related to mass, energy, and economic value-based allocated systems.

Conclusions

The choice of the allocation methods is essential for the outcomes, especially for global warming potential in this case. The application of economic allocation leads to increased GWP when replacing gasoline by ethanol fuels, while reduction of GWP is achieved when mass/energy allocation is used as well as in the system where biogenic CO2 is excluded. Ethanol fuels are better options than gasoline when abiotic depletion and ozone layer depletion are concerned. In terms of other environmental impacts, gasoline is a better option, mainly due to the emissions of nutrients and toxic substances connected with agriculture. A clear shift of problems can be detected: saving fossil fuels at the expense of emissions related to agriculture, with GHG benefits depending on allocation choices. The overall evaluation of these fuel options, therefore, depends very much on the importance attached to each impact category.

Recommendations and perspectives

This study focuses only on corn stover-based ethanol as one case. Further studies may include other types of cellulosic feedstocks (i.e., switchgrass or wood), which require less intensive agricultural practice and may lead to better environmental performance of fuel ethanol. Furthermore, this study shows that widely used but different allocation methods determine outcomes of LCA studies on biofuels. This is an unacceptable situation from a societal point of view and a challenge from a scientific point of view. The results from applying just one allocation method are not sufficient for decision making. Comparison of different allocation methods is certainly of crucial importance. A broader approach beyond LCA for the analysis of biorefinery systems with regard to energy conservation, environmental impact, and cost–benefit will provide general indications on the sustainability of bio-based productions.  相似文献   

5.

Background

The production of fuel-grade ethanol from lignocellulosic biomass resources has the potential to increase biofuel production capacity whilst minimising the negative environmental impacts. These benefits will only be realised if lignocellulosic ethanol production can compete on price with conventional fossil fuels and if it can be produced commercially at scale. This paper focuses on lignocellulosic ethanol production in Europe. The hypothesis is that the eventual cost of production will be determined not only by the performance of the conversion process but by the performance of the entire supply-chain from feedstock production to consumption. To test this, a model for supply-chain cost comparison is developed, the components of representative ethanol supply-chains are described, the factors that are most important in determining the cost and profitability of ethanol production are identified, and a detailed sensitivity analysis is conducted.

Results

The most important cost determinants are the cost of feedstocks, primarily determined by location and existing markets, and the value obtained for ethanol, primarily determined by the oil price and policy incentives. Both of these factors are highly uncertain. The best performing chains (ethanol produced from softwood and sold as a low percentage blend with gasoline) could ultimately be cost competitive with gasoline without requiring subsidy, but production from straw would generally be less competitive.

Conclusion

Supply-chain design will play a critical role in determining commercial viability. The importance of feedstock supply highlights the need for location-specific assessments of feedstock availability and price. Similarly, the role of subsidies and policy incentives in creating and sustaining the ethanol market highlights the importance of political engagement and the need to include political risks in investment appraisal. For the supply-chains described here, and with the cost and market parameters selected, selling ethanol as a low percentage blend with gasoline will maximise ethanol revenues and minimise the need for subsidies. It follows, therefore, that the market for low percentage blends should be saturated before markets for high percentage blends.  相似文献   

6.

Purpose

Two different bioenergy systems using willow chips as raw material has been assessed in detail applying life cycle assessment (LCA) methodology to compare its environmental profile with conventional alternatives based on fossil fuels and demonstrate the potential of this biomass as a lignocellulosic energy source.

Methods

Short rotation forest willow plantations dedicated to biomass chips production for energy purposes and located in Southern Sweden were considered as the agricultural case study. The bioenergy systems under assessment were based on the production and use of willow-based ethanol in a flexi fuel vehicle blended with gasoline (85 % ethanol by volume) and the direct combustion of willow chips in an industrial furnace in order to produce heat for end users. The standard framework for LCA from the International Standards Organisation was followed in this study. The environmental profiles as well as the hot spots all through the life cycles were identified.

Results and discussion

According to the results, Swedish willow biomass production is energetically efficient, and the destination of this biomass for energy purposes (independently the sort of energy) presents environmental benefits, specifically in terms of avoided greenhouse gases emissions and fossil fuels depletion. Several processes from the agricultural activities were identified as hot spots, and special considerations should be paid on them due to their contribution to the environmental impact categories under analysis. This was the case for the production and use of the nitrogen-based fertilizer, as well as the diesel used in agricultural machineries.

Conclusions

Special attention should be paid on diffuse emissions from the ethanol production plant as well as on the control system of the combustion emissions from the boiler.  相似文献   

7.

Background

Sugarcane bagasse (SCB) is one of the most promising lignocellulosic biomasses for use in the production of biofuels. However, bioethanol production from pure SCB fermentation is still limited by its high process cost and low fermentation efficiency. Sugarcane molasses, as a carbohydrate-rich biomass, can provide fermentable sugars for ethanol production. Herein, to reduce high processing costs, molasses was integrated into lignocellulosic ethanol production in batch modes to improve the fermentation system and to boost the final ethanol concentration and yield.

Results

The co-fermentation of pretreated SCB and molasses at ratios of 3:1 (mixture A) and 1:1 (mixture B) were conducted at solid loadings of 12% to 32%, and the fermentation of pretreated SCB alone at the same solid loading was also compared. At a solid loading of 32%, the ethanol concentrations of 64.10 g/L, 74.69 g/L, and 75.64 g/L were obtained from pure SCB, mixture A, and mixture B, respectively. To further boost the ethanol concentration, the fermentation of mixture B (1:1), with higher solid loading from 36 to 48%, was also implemented. The highest ethanol concentration of 94.20 g/L was generated at a high solid loading of 44%, with an ethanol yield of 72.37%. In addition, after evaporation, the wastewater could be converted to biogas by anaerobic digestion. The final methane production of 312.14 mL/g volatile solids (VS) was obtained, and the final chemical oxygen demand removal and VS degradation efficiency was 85.9% and 95.9%, respectively.

Conclusions

Molasses could provide a good environment for the growth of yeast and inoculum. Integrating sugarcane molasses into sequential cellulosic biofuel production could improve the utilization of biomass resources.
  相似文献   

8.

Background

Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF).

Results

Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%).

Conclusions

Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.  相似文献   

9.
10.

Purpose

India’s biofuel programme relies on ethanol production from sugarcane molasses. However, there is limited insight on environmental impacts across the Indian ethanol production chain. This study closes this gap by assessing the environmental impacts of ethanol production from sugarcane molasses in Uttar Pradesh, India. A comparative analysis with south-central Brazilian sugarcane ethanol is also presented to compare the performance of sugarcane molasses-based ethanol with sugarcane juice-based ethanol.

Methods

The production process is assessed by a cradle-to-gate life cycle assessment. The multifunctionality problem is solved by applying two variants of system expansion and economic allocation. Environmental impacts are assessed with Impact 2002+ and results are presented at the midpoint level for greenhouse gas emissions, non-renewable energy use, freshwater eutrophication and water use. Furthermore, results include impacts on human health and ecosystem quality at the damage level. Sensitivity analysis is also performed on key contributing parameters such as pesticides, stillage treatment and irrigation water use.

Results and discussion

It is found that, compared to Brazilian ethanol, Indian ethanol causes lower or comparable greenhouse gas emissions (0.09–0.64 kgCO2eq/kgethanolIN, 0.46–0.63 kgCO2eq/kgethanolBR), non-renewable energy use (?0.3–6.3 MJ/kgethanolIN, 1–4 MJ/kgethanolBR), human health impacts (3.6?·?10?6 DALY/kgethanolIN, 4?·?10?6 DALY/kgethanolBR) and ecosystem impairment (2.5 PDF?·?m2?·?year/kgethanolIN, 3.3 PDF?·?m2?·?year/kgethanolBR). One reason is that Indian ethanol is exclusively produced from molasses, a co-product of sugar production, resulting in allocation of the environmental burden. Additionally, Indian sugar mills and distilleries produce surplus electricity for which they receive credits for displacing grid electricity of relatively high CO2 emission intensity. When economic allocation is applied, the greenhouse gas emissions for Indian and Brazilian ethanol are comparable. Non-renewable energy use is higher for Indian ethanol, primarily due to energy requirements for irrigation. For water use and related impacts, Indian ethanol scores worse due groundwater irrigation, despite the dampening effect of allocation. The variation on greenhouse gas emissions and non-renewable energy use of Indian mills is much larger for high and low performance than the respective systems in Brazil.

Conclusions

Important measures can be taken across the production chain to improve the environmental performance of Indian ethanol production (e.g. avoiding the use of specific pesticides, avoiding the disposal of untreated stillage, transition to water efficient crops). However, to meet the targets of the Indian ethanol blending programme, displacement effects are likely to occur in countries which export ethanol. To assess such effects, a consequential study needs to be prepared.  相似文献   

11.

Purpose and methods

The paper introduces a simple retrofit performed on a case study vessel, with the aim of assessing the retrofit’s potential environmental impacts via doing a life cycle assessment. Additionally, the case presented herein strives to evidence the applicability of life cycle assessment (LCA) appraisals within shipyard representatives or managers.

Results and discussion

The environmental results shown in this paper are related to cost calculations presented for the selected retrofit, underlining the potential environmental impacts from the retrofit, while appraising its economic performance.

Conclusions

The paper strives to evidence that significant savings with regard to fuel costs can be achieved by the application of this retrofit to ships with a similar operational profile, but more importantly, the improved operational efficiency and the emission reductions can be noteworthy. Lastly, the results summarised intend to offer an optimistic context towards the implementation of the retrofit at a larger scale, i.e. a section of the existing fleet.  相似文献   

12.

Purpose

This research aims to assess the current freshwater use in the cassava supply chain for food, feed fuel in the Mun basin, and the water scarcity impact and possible options to increase cassava production to meet the future demand following the Renewable and Alternative Energy Development Plan (AEDP) target.

Methods

This research analyzes freshwater use based on ISO 14046 water footprint assessment. The analysis was implemented based on a life cycle perspective that determines the impact on freshwater use from cassava products along their supply chain. Both direct water use and indirect water use that associated are analyzed. Midpoint impact of water use was assessed using water stress index (WSI) to calculate water scarcity footprint.

Results and discussion

The results show that in the current situation, total freshwater use of all cassava-related product in Mun basin in the base case is 1140 million m3/year. When WSI was applied, water scarcity footprint of all cassava-related products in the Mun basin in the base case was only 147 million m3/year. In the scenario 1, increasing irrigation to increase yield in the existing cassava cultivation area in the Mun basin has the largest water use compare to other scenarios. Scenarios 2 and 3, expanding cassava cultivation area in Mun basin and in other regions, have lower water and water scarcity impact than scenario 1. The benefit from transforming paddy rice (in unsuitable areas) to cassava cultivation was also good. However, more resources are required including land, energy, or fertilizer, and other environmental impacts such as greenhouse gas emission or eutrophication could be increased from the increasing resource use. Therefore, the decision-making process needs to consider the trade-off between those factors, and a more complete life cycle assessment (LCA) on the envisioned alternatives should be applied for further analysis.

Conclusions

The increasing demand of biofuels derived from cassava can increase stress on water in the Mun River basin. Increasing irrigation water use in the area as per requirement could possibly increase yield to meet the future feedstock demand but has large water scarcity impact. However, this could be alleviated by using groundwater from additional wells in the farm. Expanding cassava cultivation area could be another option having low water scarcity impact, but it requires more resources and could increase other environmental impacts that need to be further analyzed by a complete LCA.
  相似文献   

13.

Purpose

The results of published Life Cycle Assessments (LCAs) of biofuels are characterized by a large variability, arising from the diversity of both biofuel chains and the methodologies used to estimate inventory data. Here, we suggest that the best option to maximize the accuracy of biofuel LCA is to produce local results taking into account the local soil, climatic and agricultural management factors.

Methods

We focused on a case study involving the production of first-generation ethanol from sugar beet in the Picardy region in Northern France. To account for local factors, we first defined three climatic patterns according to rainfall from a 20-year series of weather data. We subsequently defined two crop rotations with sugar beet as a break crop, corresponding to current practice and an optimized management scenario, respectively. The six combinations of climate types and rotations were run with the process-based model CERES-EGC to estimate crop yields and environmental emissions. We completed the data inventory and compiled the impact assessments using Simapro v.7.1 and Ecoinvent database v2.0.

Results

Overall, sugar beet ethanol had lower impacts than gasoline for the abiotic depletion, global warming, ozone layer depletion and photochemical oxidation categories. In particular, it emitted between 28 % and 42 % less greenhouse gases than gasoline. Conversely, sugar beet ethanol had higher impacts than gasoline for acidification and eutrophication due to losses of reactive nitrogen in the arable field. Thus, LCA results were highly sensitive to changes in local conditions and management factors. As a result, an average impact figures for a given biofuel chain at regional or national scales may only be indicative within a large uncertainty band.

Conclusions

Although the crop model made it possible to take local factors into account in the life-cycle inventory, best management practices that achieved high yields while reducing environmental impacts could not be identified. Further modelling developments are necessary to better account for the effects of management practices, in particular regarding the benefits of fertiliser incorporation into the topsoil in terms of nitrogen losses abatement. Supplementary data and modelling developments also are needed to better estimate the emissions of pesticides and heavy metals in the field.  相似文献   

14.
15.

Background

Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented.

Results

The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively.

Conclusions

According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and if the cost of enzymes continues to fall.  相似文献   

16.

Purpose

Light-duty vehicles contribute considerably to global greenhouse gas emissions. Fuel cell vehicles (FCVs) may play a key role in mitigating these emissions without facing the same limitations in range and refueling time as battery electric vehicles (BEVs). In this study, we assess the environmental impacts and costs of a polymer electrolyte membrane fuel cell system (FCS) for use in light-duty FCVs and integrate these results into a comparative evaluation between FCVs, BEVs, and internal combustion engine vehicles (ICEVs).

Methods

We conduct a detailed life cycle assessment (LCA) and cost assessment for the current state of the technology and two future scenarios for technological development. We compile a detailed and consistent inventory for the FCS by systematically disassembling and integrating information found in cost studies. For the vehicle-level comparison, we use models to ensure that vehicle size, performance, and fuel consumption are unbiased between vehicle types and consistent with the scenarios for technological development.

Results and discussion

Our results show that FCVs can decrease life cycle greenhouse gas emissions by 50 % compared to gasoline ICEVs if hydrogen is produced from renewable electricity, thus exhibiting similar emission levels as BEVs that are charged with the same electricity mix. If hydrogen is produced by natural gas reforming, FCVs are found to offer no greenhouse gas reductions, along with higher impacts in several other environmental impact categories. A major contributor to these impacts is the FCS, in particular the platinum in the catalyst and the carbon fiber in the hydrogen tank. The large amount of carbon fiber used in the tank was also the reason why we found that FCVs may not become fully cost competitive with ICEVs or BEVs, even when substantial technological development and mass production of all components is assumed.

Conclusions

We conclude that FCVs only lead to lower greenhouse gas emissions than ICEVs if their fuel is sourced from renewable energy, as is the case with BEVs. FCVs are an attractive alternative to ICEVs in terms of vehicle performance criteria such as range and refueling time. However, the technological challenges associated with reducing other environmental impacts and costs of FCVs seem to be as large, if not larger, than those associated with the capacity and costs of batteries for BEVs—even when not taking into account the efforts required to build a hydrogen infrastructure network for road transportation.
  相似文献   

17.

Background

The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low.

Results

Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases.

Conclusions

Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.  相似文献   

18.
19.

Background

PKQuest, a new physiologically based pharmacokinetic (PBPK) program, is applied to human ethanol data. The classical definition of first pass metabolism (FPM) based on the differences in the area under the curve (AUC) for identical intravenous and oral doses is invalid if the metabolism is non-linear (e.g. ethanol). Uncertainties in the measurement of FPM have led to controversy about the magnitude of gastric alcohol metabolism. PKQuest implements a new, rigorous definition of FPM based on finding the equivalent intravenous input function that would produce a blood time course identical to that observed for the oral intake. This input function equals the peripheral availability (PA) and the FPM is defined by: FPM = Total oral dose – PA. PKQuest also provides a quantitative measurement of the time course of intestinal absorption.

Methods

PKQuest was applied to previously published ethanol pharmacokinetic data.

Results

The rate of ethanol absorption is primarily limited by the rate of gastric emptying. For oral ethanol with a meal: absorption is slow (≈ 3 hours) and the fractional PKQuest FPM was 36% (0.15 gm/Kg dose) and 7% (0.3 gm/Kg). In contrast, fasting oral ethanol absorption is fast (≈ 50 minutes) and FPM is small.

Conclusions

The standard AUC and one compartment methods significantly overestimate the FPM. Gastric ethanol metabolism is not significant. Ingestion of a coincident meal with the ethanol can reduce the peak blood level by about 4 fold at low doses. PKQuest and all the examples are freely available on the web at http://www.pkquest.com.  相似文献   

20.

Purpose

This study provides a general methodology to integrate LCA into a single- or multi-objective process design optimization context. It uses specific weightings for foreground emissions, for preventable background emissions and for unpreventable background emissions, for each impact category. It is illustrated for a natural gas combined cycle power plant with three scenarios to reduce its carbon dioxide emissions: CO2 capture and sequestration, fuel substitution with biogas or fuel substitution with synthetic gas from wood.

Methods

Assuming that the opportunity to prevent emissions elsewhere is an implicit part of the process design decision space, the optimal solution cannot waste such opportunities and is shown to minimize total life cycle costs, including emission avoidance costs based on the optimal combination of prevention and compensation measures in the background system. In the case study, background emissions are inventoried from the ecoinvent database, their compensation costs are derived from the Ecocosts 2007 impact assessment method and their prevention costs are estimated from the literature. The calculated avoidance costs (weightings) then show how the background system affects the final choice of CO2 reduction scenario.

Results and discussion

In the case study, all three options partially shift environmental burdens to the background system, which can be prevented or compensated. The corresponding minimum avoidance cost is highest overall for the biogas option, thus putting it at a disadvantage. For a vast majority of ecoinvent processes, energy efficiency is important to minimize total avoidance costs because they are dominated by background CO2. Furthermore, prevention cost data gathering can be simplified in some cases, without distorting design decisions, using a CO2-only background inventory. The non-CO2 background inventory is more useful after process design, for procurement decisions.

Conclusions

Over-investing in design modifications cannot achieve the same background impact reductions as a sensible green procurement policy. Thus, the proposed weighting methodology ensures that all types of design decisions integrate LCA without incorrectly assuming that emissions are necessarily unavoidable when in the background. Within a context of future emission taxes or tradable permits, the weightings can also anticipate the after-tax cost passed on by suppliers—a marketable benefit of LCA.

Recommendations

Since many LCA studies are equivalent to design optimization problems, the proposed weighting methodology provides a single-score impact method relevant to decision-making as well as a straightforward approach to LCA interpretation in terms of detailing the optimal combination of applicable design modifications, prevention measures and compensation measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号