首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of physical stimuli to cell populations in tissue engineering and regenerative medicine may facilitate significant scientific and clinical advances. However, for the most part, these stimuli are evaluated in isolation, rather than in combination. This study was designed to combine two physical stimuli. The first being a microstructured tissue culture polystyrene substrate, known to produce changes in cell shape and orientation, and the second being laminar shear stress in a parallel plate flow chamber. The combined effects of these stimuli on endothelial cell monolayers cells were evaluated in a parallel plate flow chamber and using a computational fluid dynamics (CFD) model. The topography of the cell monolayers cultured on different microstructured surfaces was determined using confocal laser scanning microscopy (CLSM), and this topographic information was used to construct the CFD model. This research found that while the specific underlying structures were effectively planarized by the cell monolayer, significant differences in cell shape and orientation were observed on the different microstructured surfaces. Cells cultured on grooved substrates aligned in the direction of the grooves and showed higher retention after 1-h LSS conditioning than those cultured on pillars. The modeled shear stress distributions also showed differences. While minor differences in the magnitude of shear stress were noted, aligned cell monolayers experienced significantly lower spatial gradients of shear stress when compared with cells that were not pre-aligned by surface features. The results presented here provide an analysis of how one form of physical stimulus can be moderated by another and also provide a methodology by which the understanding of cell responses to topographic and mechanical stimuli can be further advanced.  相似文献   

2.
Adipose-derived stem cells (ASCs) are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue. Isolated ASCs are typically expanded in monolayer on standard tissue culture plastic with a basal medium containing 10% fetal bovine serum. However, recent data suggest that altering the monolayer expansion conditions by using suspension culture plastic, adding growth factors to the medium, or adjusting the seeding density may affect the self-renewal rate, multipotency, and lineage-specific differentiation potential of the ASCs. We hypothesized that variation in any of these expansion conditions would influence the chondrogenic potential of ASCs. ASCs were isolated from human liposuction waste tissue and expanded through two passages with different tissue culture plastic, feed medium, and cell seeding densities. Once expanded, the cells were cast in an agarose gel and subjected to identical chondrogenic culture conditions for 7 days, at which point cell viability, radiolabel incorporation, and gene expression were measured. High rates of matrix synthesis upon chondrogenic induction were mostly associated with smaller cells, as indicated by cell width and area on tissue culture plastic, and it appears that expansion in a growth factor supplemented medium is important in maintaining this morphology. All end-point measures were highly dependent on the specific monolayer culture conditions. These results support the hypothesis that monolayer culture conditions may "prime" the cells or predispose them towards a specific phenotype and thus underscore the importance of early culture conditions in determining the growth and differentiation potential of ASCs.  相似文献   

3.
Perfusion culture of fetal human hepatocytes in microfluidic environments   总被引:1,自引:0,他引:1  
Various types of bioreactors composed of microstructured PDMS (Polydimethylsiloxane) layers have recently been fabricated for perfusion culture of mammalian cells such as adult rat hepatocytes. As a new feature of those bioreactors, in this study, cultivation of fetal human hepatocytes (FHHs) was attempted, because they have high possibility to mature in vitro with preserving their normality, which is suitable for inplantation of liver tissue equivalents reconstituted in vitro. During the perfusion culture in the PDMS bioreactors for 1 week, cells showed good attachment, spreading and reached their confluence over the channels. In addition, their albumin production was significantly enhanced in the perfusion culture using the PDMS bioreactors up to about four times during the FHH perfusion culture when compared in dish-level static culture. Hep G2 cell cultures were also performed and have also shown under perfusion conditions an enhanced cell activity multiplied by 2 compared to static conditions. Although, the cellular activities of FHH cells are still low even compared to those of the Hep G2 cells, the conclusions of this work is encouraging toward future liver tissue engineering based on in vitro propagation and maturation of hepatocyte progenitors combined with microfabrication technologies.  相似文献   

4.
5.
Tissue‐embedded cells are often exposed to a complex mixture of extracellular matrix (ECM) molecules, to which they bind with different cell adhesion receptors and affinities. Differential cell adhesion to ECM components is believed to regulate many aspects of tissue function, such as the sorting of specific cell types into different tissue compartments or ECM niches. In turn, aberrant switches in cell adhesion preferences may contribute to cell misplacement, tissue invasion, and metastasis. Methods to determine differential adhesion profiles of single cells are therefore desirable, but established bulk assays usually only test cell population adhesion to a single type of ECM molecule. We have recently demonstrated that atomic force microscopy‐based single‐cell force spectroscopy (SCFS), performed on bifunctional, microstructured adhesion substrates, provides a useful tool for accurately quantitating differential matrix adhesion of single Chinese hamster ovary cells to laminin and collagen I. Here, we have extended this approach to include additional ECM substrates, such as bifunctional collagen I/collagen IV surfaces, as well as adhesion‐passivated control surfaces. We investigate differential single cell adhesion to these substrates and analyze in detail suitable experimental conditions for comparative SCFS, including optimal cell‐substrate contact times and the impact of force cycle repetitions on single cell adhesion force statistics. Insight gained through these experiments may help in adapting this technique to other ECM molecules and cell systems, making directly comparative SCFS a versatile tool for comparing receptor‐mediated cell adhesion to different matrix molecules in a wide range of biological contexts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
BackgroundBacterial nanocellulose (BNC) has been used as cell support in numerous tissue engineering studies. Its use can be explained based on the fact its structure allows the creation of a required microenvironment for an ideal material, which supports 3D cell culture. Its structure and interconnected pores lead to animal cells adhesion and proliferation, also allowing oxygen and nutrients transportation.MethodsWe developed a new methodology to produce spherical platforms synthesized by Komagataebacter hansenii (ATCC 23769) under dynamic culture conditions in minimal medium. The chemical composition and physical properties of the platforms were evaluated. Then, human melanoma cells (SK-MEL-28) were encapsulated into the platforms and evaluated by metabolic activity, morphology and their ability on adhering to the Hollow Translucid BNC Spheres (BNC-TS-H) and Compartmentalized Translucid BNC Spheres (BNC-TS-C) up to 3 days.ResultsBNC-TS-H and BNC-TS-C platforms were produced as translucid spheroid platforms with distinct microenvironment under dynamic fermentation. The chemical and physical characterizations confirmed the platforms composition as BNC. The produced internal microenvironments in spherical platforms are relevant to determine tumor cell fate. In the first 12 h of culture, cells could adhere to nanocellulose microfibers assuming their typical tumorous phenotype in 72 h of culture.ConclusionThe dynamic fermentation in minimal medium produced distinct microstructured platforms of BNC-TS-H and BNC-TS-C. The platforms microstructure resulted in microenvironments that enabled distinct cell-cell and cell-matrix interactions. This behavior suggests several applications in tissue engineering.General significanceThe method produced translucid BNC sphere platforms with distinct microenvironments for 3D cell culture.  相似文献   

7.
Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions.  相似文献   

8.
Human mesenchymal stem cells (hMSCs) have unique potential to develop into functional tissue constructs to replace a wide range of tissues damaged by disease or injury. While recent studies have highlighted the necessity for 3-D culture systems to facilitate the proper biological, physiological, and developmental processes of the cells, the effects of the physiological environment on the intrinsic tissue development characteristics in the 3-D scaffolds have not been fully investigated. In this study, experimental results from a 3-D perfusion bioreactor system and the static culture are combined with a mathematical model to assess the effects of oxygen transport on hMSC metabolism and proliferation in 3-D constructs grown in static and perfusion conditions. Cells grown in the perfusion culture had order of magnitude higher metabolic rates, and the perfusion culture supports higher cell density at the end of cultivation. The specific oxygen consumption rate for the constructs in the perfusion bioreactor was found to decrease from 0.012 to 0.0017 micromol/10(6) cells/h as cell density increases, suggesting intrinsic physiological change at high cell density. BrdU staining revealed the noneven spatial distribution of the proliferating cells in the constructs grown under static culture conditions compared to the cells that were grown in the perfusion system. The hypothesis that the constructs in static culture grow under oxygen limitation is supported by higher Y(L/G) in static culture. Modeling results show that the oxygen tension in the static culture is lower than that of the perfusion unit, where the cell density was 4 times higher. The experimental and modeling results show the dependence of cell metabolism and spatial growth patterns on the culture environment and highlight the need to optimize the culture parameters in hMSC tissue engineering.  相似文献   

9.
Pluripotent human embryonic stem cell (hESC) lines are a promising model system in developmental and tissue regeneration research. Differentiation of hESCs towards the three germ layers and finally tissue specific cell types is often performed through the formation of embryoid bodies (EBs) in suspension or hanging droplet culture systems. However, these systems are inefficient regarding embryoid body (EB) formation, structural support to the EB and long term differentiation capacity. The present study investigates if agarose, as a semi solid matrix, can facilitate EB formation and support differentiation of hESC lines. The results showed that agarose culture is able to enhance EB formation efficiency with 10% and increase EB growth by 300%. The agarose culture system was able to maintain expression of the three germ layers over 8 weeks of culture. All of the four hESC lines tested developed EBs in the agarose system although with a histological heterogeneity between cell lines as well as within cell lines. In conclusion, a 3-D agarose culture of spherical hESC colonies improves EB formation and growth in a cost effective, stable and non-laborious technique.  相似文献   

10.
The value of cultured cells in cell biological, pharmaceutical or biotechnological research depends on the degree of terminal cell differentiation. In conventional Petri dishes or tissue culture plates it is often difficult to achieve culture conditions which resemble the in situ situation of intact tissue, as regards optimal cell adhesion, exchange of nutrients and metabolic products. These limitations prompted us to develop simple laboratory tools which optimize the environment of cultured cells. A perfusion apparatus with various culture containers and compatible cell holder sets was constructed which allows the simulation of organotypic conditions. (i) The cells can be kept on individual and interchangeable support materials for an optimal cell attachment. (ii) Culture medium can be perfused during the whole culture period. (iii) One type of the new culture container can be perfused with different media at the apical and basal side of the cells, thus mimicking the organotypic environment that applies for epithelial monolayers. Cell culture experiments with renal collecting duct epithelia exhibited an excellent morphological appearance showing typical features of principal and intercalated cells.  相似文献   

11.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

12.
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo.  相似文献   

13.
A pivotal requirement for the generation of vascularized tissue equivalents is the development of culture systems that provide a physiological perfusion of the vasculature and tissue-specific culture conditions. Here, we present a bioreactor system that is suitable to culture vascularized tissue equivalents covered with culture media and at the air–medium interface, which is a vital stimulus for skin tissue. For the perfusion of the vascular system a new method was integrated into the bioreactor system that creates a physiological pulsatile medium flow between 80 and 120 mmHg to the arterial inflow of the equivalent's vascular system. Human dermal microvascular endothelial cells (hDMECs) were injected into the vascular system of a biological vascularized scaffold based on a decellularized porcine jejunal segment and cultured in the bioreactor system for 14 days. Histological analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining revealed that the hDMECs were able to recolonize the perfused vascular structures and expressed endothelial cell specific markers such as platelet endothelial cell adhesion molecule and von Willebrand factor. These results indicate that our bioreactor system can serve as a platform technology to generate advanced bioartificial tissues with a functional vasculature for future clinical applications.  相似文献   

14.
The dynamics of human and animal adipogenesis has been defined using several traditional cell systems including stromal vascular cells and adipocyte-related cell lines. But a relatively new cell system using progeny cells stemming from the dedifferentiation of purified cultures of mature adipocytes may be used for studying the development and biology of adipocytes. In this research, we show that isolated (and purified) mature adipocytes derived from Wagyu cattle dedifferentiate into progeny cells, and that these spindle-shaped, proliferative-competent daughter cells possess ability to proliferate. We outline the optimum cell culture system and offer precautionary thoughts for effective mature adipocyte culture. Collectively, this represents a novel cell model which may provide new insights into cell development, physiology and use as a model for animal production/composition, tissue engineering and disease treatment.  相似文献   

15.
Myosin heavy chain expression in embryonic cardiac cell cultures   总被引:4,自引:0,他引:4  
Chick embryonic heart cell isolates and monolayer cultures were prepared from atria and ventricles at selected stages of cardiac development. The cardiac myocytes were assayed for myosin heavy chain (MHC) content using monoclonal antibodies (McAbs) specific in the heart for atrial (B-1), ventricular (ALD-19), or conductive system (ALD-58) isoforms. Using immunofluorescence microscopy or radioimmunoassay, MHC accumulation was measured before plating and at 48 hr or 7 days in culture. Reproducible changes in MHC antigenicity were observed by 7 days in both atrial and ventricular cultures. The changes were stage dependent and tissue specific but generally resulted in a decreased reactivity with the tissue specific MHC McAbs. In addition, the isoform recognized by ALD-58, characteristic of the conductive system cells in vivo, was never present in cultured myocytes. These results indicate that MHC isoforms produced in vivo may be replaced in monolayer cultures by an isoform(s) not recognized by our tissue specific MHC McAbs. This suggests that the intrinsic program of cardiac myogenesis, within cardiac myocytes, may not be sufficient to establish and maintain differential expression of tissue specific MHC in monolayer cell culture.  相似文献   

16.
A hollow fiber cartridge may be used in an extraneous recycle loop to facilitate perfusion operation of a stirred tank bioreactor. Retention of cells while removing waste products and replenishment with fresh nutrients allows higher than normal cell densities obtained in batch or continuous culture systems. This system successfully propagated HeLa cells to over 11 million viable cells per milliliter. Much higher perfusion rates (up to 4 vessel volumes per day) were necessary for high density culture of HeLa cells compared to BHK or a hybridoma cell line because of a much higher specific cellular metabolic rate. Cell specific glucose consumption rate, lactate production and ammonia production rates are several times higher for HeLa cells. Reproducible high cell densities and viabilities can be repeatedly obtained after harvest and dilution of a HeLa cell culture by partial drainage and reconstitution in the bioreactor.  相似文献   

17.
Homogeneous technique facilitates the cultivation of large quantities of cells, reduces the risk of contamination by eliminating many manipulations, and makes practical the control of conditions such as pH and oxygen tension. Although most animal cells will not multiply in free suspension, certain cell lines have lost the requirement of being attached to a solid surface. These cells can be subcultured indefinitely but have some resemblance to cancer cells such as their abnormal karyotype. Certain cell linen developed from human embryonic tissue maintain their diploid character after repeated subculture and would seem to be ideal for the production of vaccines. However, strict regulations exist for viral products for human injection in that only cells taken from normal tissue and subcultured but once may be used. A microcarrier method in which cells adhere to DEAE-Sephadex beads permits a suspension culture which may be termed quasihomogeneous. The attached cells may be retained by sedimentation or by screening as the medium is replaced. Cell debirs from the original tissue is difficult to remove from microcarrier cultures; modifications of the trypsinization technique have alleviated but not solved this problem. Conditions for virus replication can be less critical than those for cell growth in that oxygen tension seems to have little influence on virus production. In cases where rate of virus production increases with specific growth rate of cells, homogeneous culture would have a advantage in maintaining a high cell mogeneous culture would have a valuble advantage in maintaining a high cell growth rate for a longer time. Some virus infections destroy cells, but others cause little change in cellular mteabolism except that virus is continually produced. The latter type can be conducted with a microcarrier in continuous culture with a virus titer exceeding 107 plaque forming units per milliliter for over 50 days with Rubella-infected BHK cells.  相似文献   

18.
19.
The mechanisms of transport of p-(dihydroxyboryl)-phenylalanine (BPA) through the cell membrane were investigated in vitro, evaluating especially the systems responsible for the transport of neutral amino acids as potential carriers for BPA. Rat 9L gliosarcoma cells and Chinese hamster V79 cells were exposed to BPA under controlled conditions and in a defined medium that was free of amino acids. The time course of (10)B (delivered by BPA) uptake and efflux was measured under different conditions. To analyze the intracellular boron content, direct-current plasma atomic emission spectroscopy (DCP-AES) was used after separating the cells from extracellular boron in the cell medium using an oil filtration technique. The dependence of factors such as cell type, temperature, composition and concentration of amino acids and specific substrates for amino acid transport systems in the culture medium or in intracellular compartments on BPA uptake and efflux were studied. The results of this study support the hypothesis that BPA is transported by the L system and that transport can be further stimulated by amino acids preaccumulated in the cell by either the L or A amino acid transport system. Copyright [bj54] by Radiation Research Society  相似文献   

20.
To overcome logistical difficulties with current designs of cell- or tissue-based biosensors which have individual cells or tissue slices immobilized on membranes or microelectrode arrays, we have proposed a system that uses three-dimensional cultures of neural cells immobilized in hydrogel matrices. In this design, immobilized cells would be maintained in a reservoir and then transferred to a detector platform when needed for analysis. The development of such a system relies upon a renewable supply of cells and the ability to culture cells for long periods of time in three-dimensions while maintaining their physiological function. To investigate the ability to culture neural cells in 3D matrices, embryonic rat cortical neurons and astrocytes were immobilized by matrix entrapment in a novel sugar poly(acrylate) hydrogel and collagen gels. The sugar poly(acrylate) hydrogel does not appear to support neural cell growth as a result of a lack of cell adherence, small pore size and, possibly, harshness of synthesis conditions. In contrast, collagen gels support the growth of cortical neurons, astrocytes, as well as neural progenitor cells. Evidence is also presented from immunocytochemistry and patch-clamp measurements which shows that neural progenitor cells proliferate in culture and can be induced to differentiate into neural cell types. Thus, they potentially represent a renewable cell source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号