首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Summary The temporal pattern of replication of the rRNA and legumin genes differs in synchronized pea root cells. The relative number of rRNA genes replicated hourly during the first five hours of S phase ranges between 5 and 10 percent. In late S phase, during hours six through nine, the number of rRNA genes replicated increases reaching a maximum of about 25 percent at the ninth hour. Unlike the rRNA genes, the legumin genes have a wave-like pattern of replication peaking in early S phase at the third hour and again in late S phase at the eighth hour.Replicating rDNA, isolated by benzoylated naphthoylated DEAE-column chromatography, has EcoR I restriction sites that are absent in non-replicating rDNA sequences. The cleavage of these sites is independent of the time of rDNA replication. The transient nature of the EcoR I sites suggests that they exist in a hemimethylated state in parental DNA.The two Hind III repeat-size classes of rDNA of var. Alaska peas are replicated simultaneously as cells progress through S phase. Thus, even if the 9.0 kb and 8.6 kb repeat classes are located on different chromosomes, their temporal order of replication is the same.  相似文献   

3.
In Saccharomyces cerevisiae the majority of the genes for 5S rRNA lie within a 9kb rDNA sequence that is present as 100-200 tandemly-repeated copies on Chromosome XII. Following our observations that about 10% of yeast 5S rRNA exists as minor variant sequences, we screened a collection of yeast DNA fragments cloned in lambda gt for 5S rRNA genes whose flanking sequences differed from those adjacent to 5S rRNA genes of the rDNA repeat. Three variant 5S rRNA genes were isolated on the basis of such dissimilarity to rDNA repeat sequences. They display a remarkable conservation of their DNA in the vicinity of the 5S coding region, and are examples of a minor form of 5S rRNA coding sequence present in a small number of copies in the yeast genome. These variant sequences appear to be transcribed as efficiently as 5S rRNA genes of the rDNA repeat. In one of our isolates of the variant sequence a Ty transposable element is inserted 145bp upstream of the initiation point for 5S rRNA synthesis.  相似文献   

4.
Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas.  相似文献   

5.
6.
7.
The four ribosomal RNA genes (rDNA units) of the rodent malaria parasite, Plasmodium berghei, were identified and mapped by restriction enzyme analysis and Southern blot hybridization of genomic DNA. Although the four genes share common characteristics, they appear to be internally different from each other in expanse and sequence. One HindIII site near the 3' end of the coding region for the large rRNA is the only restriction site which we have detected that is conserved in all of the genes. The distance between the conserved HindIII site and the coding region for the small rRNA is at least 1-2 kilobases longer in two of the rDNA units than in a third unit. None of the four rDNA units were linked by restriction mapping where about 150 kilobases of the genome were accounted for. The copy number of two of the rDNA units was determined to be approximately 1 per haploid genome by quantitative analysis of cloned (plasmid) DNA versus genomic DNA digests on Southern blots. The other two genes also appear to be present in 1 copy. Restriction analysis confirms both the low copy number and that these genes are not in an easily recognizable tandem array. The low number of rDNA units requires that new copies of the genome produced during intraerythrocytic growth be active in RNA synthesis soon after their replication.  相似文献   

8.
The synchronous macroplasmodial growth phase of the slime mould Physarum polycephalum was used to study the in vivo replication of large chromosomal DNA segments. Newly replicated DNA was isolated at various points in S-phase by its preferential association with the nuclear matrix. This DNA was then used to probe cosmid clones of the Physarum genome. The results indicate that certain dispersed repetitive sequences in the genome are coordinately replicated. The observed pattern of replication may be due either to the presence of a replication origin within each repetitive sequence or to the systematic arrangement of these sequences around a replication origin. The latter appears more likely since the repetitive sequences are probably not randomly scattered within the genome.  相似文献   

9.
10.
A L Lu  N Blin  D W Stafford 《Gene》1981,14(1-2):51-62
A 1.35-kb EcoRI fragment of Lytechinus variegatus DNA containing a single 5S rRNA gene has been cloned into the plasmid vector pACYC184. Four clones from different transformation experiments contain 5S rDNA inserts of about the same size and have the same restriction enzyme digestion patterns for the enzymes HaeIII, HinfI, HhaI, and AluI. One EcoRI site near the HindIII site of the plasmid vector pACYC184 is missing in all the four clones. By DNA sequencing, the missing EcoRI ws found to be EcoRI site, d(AAATTN)d(TTTAAN) in pLu103, one of the four 5S rDNA clones. The structure of pLu103 was determined by restriction mapping and blot hybridization. Three restriction fragments, 1.0-kb HaeIII/HaeIII, 0.375-kb AluI/AluI and 0.249-kb MboII/MboII, which contain the 5S rRNA coding region, have been subcloned into the EcoRI site of the plasmid pACYC184. The organization of 5S rRNA genes in the sea urchin genome was also investigated. It was found that restriction endonuclease HaeIII has a single recognition site within each 5S rDNA repeat, and yields two fragment lengths, 1.2 and 1.3 kb. The behavior of these 5S rRNA genes when total L. variegatus DNA is partially digested with HaeIII is consistent with an arrangement of 5S rRNA genes in at least two tandemly repeated, non-interspersed families. Both the coding region and spacer region of the 5S rRNA gene in pLu103 hybridize to 1.2 and 1.3-kb rDNA families. This indicates that the cloned EcoRI fragment of 5S rDNA in pLu103 represents one single repeat of 5S rDNA in the genome.  相似文献   

11.
The macronuclear rRNA genes (rDNA) in the ciliate Tetrahymena thermophila are normally palindromic linear replicons, containing two copies of the replication origin region in inverted orientation. A circular plasmid containing a single Tetrahymena rRNA gene (one half palindrome) joined to a tandem repeat of a 1.9-kilobase (kb) rDNA segment encompassing the rDNA replication origin and known replication control elements was used to transform Tetrahymena macronuclei by microinjection. This plasmid was shown previously to have a replication advantage over the rDNA allele of the recipient cell strain (G.-L. Yu and E. H. Blackburn, Proc. Natl. Acad. Sci. USA 86:8487-8491, 1990). During vegetative cell divisions, the circular and palindromic rDNAs were rapidly replaced by novel, successively longer linear rDNAs that eventually contained up to 30 tandem 1.9-kb repeats, resulting from homologous but unequal crossovers between the 1.9-kb repeats. We present evidence to show that increasing the number of copies of the replication control regions increases the replicative advantage of the rDNA, the first such situation for a cellular nuclear replicon in a eucaryote.  相似文献   

12.
The genome of equine herpesvirus 1 (EHV-1) defective interfering (DI) particle DNA originates from discrete regions within the standard (STD) EHV-1 genome: the left terminus (0.0 to 0.04 map units) and the inverted repeats (0.78 to 0.79 and 0.83 to 0.87 map units of the internal inverted repeat; 0.91 to 0.95 and 0.99 to 1.00 map units of the terminal inverted repeat). Since DI DNA must contain cis-acting DNA sequences, such as replication origins, which cannot be supplied in trans by the STD EHV-1 virus, regions of the EHV-1 genome shown to be in DI DNA were assayed for the presence of a viral origin of DNA replication. Specifically, STD EHV-1 DNA fragments encompassing the genomic regions present in DI particle DNA were inserted into the vector pAT153, and individual clones were tested by transfection assays for the ability to support the amplification and replication of plasmid DNA in EHV-1-infected cells. The Sma-1 subfragment of the internal inverted repeat sequence (0.83 to 0.85 map units) was shown to contain origin of replication activity. Subcloning and BAL 31 deletion analysis of the 2.35-kilobase-pair (kbp) Sma-1 fragment delineated a 200-bp fragment that contained origin activity. The origin activities of all EHV-1 clones which were positive by the transfection assay were confirmed by methylation analysis by using the methylation-sensitive restriction enzymes DpnI and MboI. DNA sequencing of the 200-bp fragment which contained an EHV-1 origin of replication indicated that this region has significant homology to previously characterized origins of replication of human herpesviruses. Furthermore, comparison of known origin sequences demonstrated that a 9-bp sequence, CGTTCGCAC, which is conserved among all origins of replication of human lytic herpesviruses and which is contained within the 18-bp region in herpes simplex virus type 1 origins shown by others to be protected by an origin-binding protein (P. Elias, M. E. O'Donnell, E. S. Mocarski, and I. R. Lehman, Proc. Natl. Acad. Sci. USA 83:6322-6326) is also conserved across species in the EHV-1 origin of replication.  相似文献   

13.
In Saccharomyces cerevisiae strain 6-1G-P188 about 10 per cent of rRNA genes exist as extrachromosomal copies of rDNA repeating units. These extrachromosomal copies can be isolated as covalently closed molecules with lengths around 3mu. We have constructed a set of hybrid plasmids containing the bacterial vector pBR325, the LEU2 gene of yeast encoding beta-isopropylmalatedehydrogenase and various EcoRI restriction fragments of the 3mu DNA. We have tested the ability of our hybrid plasmids to transform LEU2 strain DC5 to leucine prototrophy. One of the plasmids Rcp21/11 transforms DC5 at the frequency comparable with that obtained with YEp13, containing the 2mu DNA replication origin. The 2400 bp EcoRI-B fragment of the 3mu DNA in Rcp21/11 carries a gene for 5S rRNA and two spacers. Our results on transformation experiments allow un to suggest that this EcoRI fragment also carries the 3mu DNA replication origin. Yeast transformants containing this plasmid are highly unstable but during the prolonged growth in selective conditions the stabilization of the LEU+ phenotype is observed being most likely a result of integration of Rcp21/11 into the yeast chromosome.  相似文献   

14.
The synchronous macroplasmodial growth phase of the slime mould Physarum polycephalum was used to study the in vivo replication of large chromosomal DNA segments. Newly replicated DNA was isolated at various points in S-phase by its preferential association with the nuclear matrix. This DNA was then used to probe cosmid clones of the Physarum genome. The results indicate that certain dispersed repetitive sequences in the genome are coordinately replicated. The observed pattern of replication may be due either to the presence of a replication origin within each repetitive sequence or to the systematic arrangement of these sequences around a replication origin. The latter appears more likely since the repetitive sequences are probably not randomly scattered within the genome.  相似文献   

15.
The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number.  相似文献   

16.
We have examined the fate of plasmids containing a segment of a mouse rDNA repeat after they were introduced by transfection into cultured mouse cells. In addition to the rDNA segment, the plasmids contained the thymidine kinase gene from herpes simplex virus 1 to allow for selection of the plasmid after transfection into thymidine kinase-deficient mouse cells. Thus far, no cases of homologous recombination between transfected plasmid DNAs and host cell sequences have been documented. We reasoned that the high repetition frequency of the rRNA genes in the mouse genome (200 copies per diploid cell) might create a favorable situation for obtaining homologous recombination events between the plasmids containing rDNA and host cell rDNA sequences. The plasmids were introduced into cells in both the presence and the absence of carrier DNA and both as covalently closed circles and linear molecules. The sites of plasmid integration in the genomes of various cell lines were examined by DNA restriction digests and hybridization, molecular cloning, and nuclear fractionation. In the seven cell lines examined, there was no evidence that the plasmids had integrated into the rRNA gene clusters of the cell. Thus, the apparent absence of site-specific integration of cloned DNAs introduced into mammalian cells does not appear to be due simply to the small target presented by most host cell sequences.  相似文献   

17.
Infection-dependent replication assays have been used to identify numerous putative origins of baculovirus replication. However, plasmid DNA, when cotransfected into insect cells with Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) DNA, replicates independently of any viral sequence in cis (11). Cotransfection of transfer plasmids and baculovirus DNA is a common procedure used in generating recombinant viruses and in measuring the level of gene expression in transient-expression assays. We have examined the fate of a series of vector plasmids in cotransfection experiments. The data reveal that these plasmids replicate following cotransfection and the replication of plasmid DNA is not due to acquisition of viral putative origin sequences. The conformation of plasmid DNA replicating in the cotransfected cells was analyzed and found to exist as high-molecular-weight concatemers. Ten to 25% of the replicated plasmid DNA was integrated into multiple locations on the viral genome and was present in progeny virions following serial passage. Sequence analysis of plasmid-viral DNA junction sites revealed no homologous or conserved sequences in the proximity of the integration sites, suggesting that nonhomologous recombination was involved during the integration process. These data suggest that while a rolling-circle mechanism could be used for baculovirus DNA replication, recombination may also be involved in this process. Plasmid integration may generate large deletions of the viral genome, suggesting that the process of DNA replication in baculovirus may be prone to generation of defective genomes.  相似文献   

18.
Unusual chloroplast transformants of Chlamydomonas reinhardtii that contain 2000 copies of a mutant version of the chloroplast atpB gene, maintained as an extrachromosomal tandem repeat, have recently been described. In this paper studies have been undertaken to (i) address possible mechanisms for generating and maintaining the amplified DNA and (ii) determine whether it is possible to use chloroplast gene amplification to overexpress chloroplast or foreign genes. Data presented here indicate that high copy number transformants harbor characteristic rearrangements in both copies of the chloroplast genome large inverted repeat. These rearrangements appear to be a consequence of, or required for, maintenance of the amplified DNA. In an attempt to mimic the apparently autonomous replication of extrachromosomal DNA in the chloroplast, transformation was carried out with a plasmid that lacked homology with the chloroplast genome or with the same plasmid carrying a putative chloroplast DNA replication origin ( oriA ). Transformants were recovered only with the plasmid containing oriA , and all transformants contained an integrated plasmid copy at oriA , suggesting that establishment or maintenance of the extrachromosomal tandem repeat requires conditions that were not replicated in this experiment. To determine whether other genes could be maintained at high copy number in the chloroplast, plasmids carrying the wild-type atpB gene or the bacterial aadA gene were introduced into a high copy number transformant. Surprisingly, the copy number of the plasmid tandem repeat declined rapidly after the secondary transformation events, even when strong selective pressure for the introduced gene was applied. Thus, chloroplast transformation can either create or destabilize high copy number tandem repeats.  相似文献   

19.
The first replicating DNA fragment (BamHI-7) of the Bacillus subtilis chromosome contains two promoters for a rRNA operon. A map of restriction enzyme cleavage sites of the region of replication origin suggests the presence of a second rRNA operon in this region. Hybridization of rRNA genes (rDNA) with DNA fragments derived from the origin region by treatment with various enzymes clearly revealed two rRNA operons in this region, one at the B7-B3 junction and the other at the B5-B6 junction. The restriction enzyme cleavage sites surrounding the rRNA operons show that the operon at the B5-B6 junction corresponds to the rrnA operon. A novel operon at the B7-B3 junction was termed rrnO. Transformation by density-labeled fragments of the origin region showed that the first replicating marker, guaA, is located in the B3 fragment. From these results, a map was constructed for the first time to correlate the genetic markers with the physical structure of the replication origin region of the B. subtilis chromosome. The role of the rrnO operon in regulating the initiation of chromosomal replication is discussed, based on the fact that the promoter of the rrnO operon suppresses the replication of the plasmid carrying the promoter.  相似文献   

20.
Extrachromosomal elements are common early intermediates of gene amplification in vivo and in cell culture. The time at which several extrachromosomal elements replicate was compared with that of the corresponding amplified or unamplified chromosomal sequences. The replication timing analysis employed a retroactive synchrony method in which fluorescence-activated cell sorting was used to obtain cells at different stages of the cell cycle. Extrachromosomally amplified Syrian hamster CAD genes (CAD is an acronym for the single gene which encodes the trifunctional protein which catalyzes the first three steps of uridine biosynthesis) replicated in a narrow window of early S-phase which was approximately the same as that of chromosomally amplified CAD genes. Similarly, extrachromosomally amplified mouse adenosine deaminase genes replicated at a discrete time in early S-phase which approximated the replication time of the unamplified adenosine deaminase gene. In contrast, the multicopy extrachromosomal Epstein-Barr virus genome replicated within a narrow window in late S-phase in latently infected human Rajii cells. The data indicate that localization within a chromosome is not required for the maintenance of replication timing control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号