首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RYLE  G. J. A. 《Annals of botany》1972,36(3):497-512
A quantitative analysis of the 14C-labelled assimilate suppliedby leaves on the main shoot to terminal meristem, stem, tillers,and roots was conducted during parallel periods of reproductiveand vegetative development in Lolium temulentum. The initial rate of entry of carbon into the shoot varied withthe area and photosynthetic efficiency of the assimilating leaf.Subsequently, respiratory losses of carbon during translocationand incorporation of assimilate at the site of utilization alsovaried. The combined effect of these differences resulted inthe supply of recently assimilated carbon being twofold greaterin reproductive shoots than in vegetative shoots, while withinshoots the carbon supply of the youngest fully expanded leafranged from four-or five-fold greater than the oldest leaf inyoung shoots, to two-or three-fold greater in older shoots.In both reproductive and vegetative shoots, the two or threeyoungest leaves thus dominated the supply of carbon for meristematicgrowth. Meristematic tissue in expanding leaves and leaf primordia atthe terminal meristem of the vegetative shoot received 18–27per cent of the total shoot carbon. This meristem utilized aboutthe same proportion of shoot carbon when it developed into aninflorescence, indicating no major change in the level of meristematicactivity. The proportion of shoot carbon utilized in stem growthincreased as both reproductive and vegetative shoots aged; thisincreased meristematic activity in stem internodes was accompaniedby reduced export of carbon to roots, which received less than10 per cent of the shoot carbon when the experiments ended.The main shoot translocated 20–30 per cent of its recentlyassimilated carbon to developing and rooted tillers, which assinks for carbon were thus as important as the terminal meristemand stem. This outward flow of carbon continued relatively uncheckedwhen donor and receptor shoots developed inflorescences.  相似文献   

2.
Assimilate Distribution in Poa annua L.   总被引:1,自引:0,他引:1  
The carbon economy of a flowering tiller of Poa annua L. hasbeen examined over the period from inflorescence emergence tograin shedding. The total import of 14C by the inflorescencereached a maximum at late grain filling but the relative importof assimilate was greatest 14 days after its appearance andrepresented 20–25 per cent of that assimilated by theinflorescence itself. The inflorescence continued to be an importantassimilatory organ after grain ripening when it exported morethan 50 per cent of its assimilate to the stem, roots and othertillers. The patterns of distribution of assimilates from the youngestuppermost and the oldest green leaf of the reproductive tillerwere largely determined by the stage of development of the inflorescence.The youngest leaf mainly supported the inflorescence up to theend of the grain-filling stage but then supplied assimilatesbasally to the roots and adjacent tillers. The oldest greenleaf supported the growth of the stem and the inflorescenceup to anthesis but after this supplied assimilates mainly tothe roots and tillers. Removal of grains or the entire inflorescence only 1 h beforesupplying 14CO2 greatly reduced the rate of fixation of 14CO2and the export of radiocarbon, as well as changing the patternof distribution of assimilates within the plant. The significanceof these results is discussed and comparisons made with cerealsand perennial grasses.  相似文献   

3.
The movement of 14C-labelled assimilate to the terminal meristem, stem, mature leaves, tillers and roots was measured in Loliurn perenn and Lolium temulentum after exposure to 14C02 of the youngest fully-expanded leaf and, on fewer occasions, the oldest healthy leaf on the main shoot. During early vegetative growth, the terminal meristem, tillers and roots received most of the 14C exported from the youngest leaf. As the shoot aged, more 14C was exported to the terminal meristem and tillers and less to roots. When the stem became a sizeable sink for 14C at the six-leaf (L. temulentum) or eleven-leaf (L. perenne) stage, less 14C moved to tillers and much less to roots. The terminal meristem continued to receive 14 at a steady rate throughout late vegetative growth. The transition from vegetative to reproductive growth in both species was marked by an abrupt increase in the export of 14C to stem from the upper leaf, but there was little change in the proportion of 14C which moved to the developing leaves and incipient inflorescence at the terminal meristem. At the same time, less 14C moved to tillers and much less to roots. Immediately before ear emergence, the export of 14C from the upper leaf (flag leaf) to the stem declined and the proportion moving to the ear increased, reaching a maximum of 55–75% as the ear emerged. The relative patterns of export of upper and lower leaves showed that while some 14 moved from each leaf to all meristems, the proximity of actively growing meristems appeared to be the main factor which determined the destination of most exported 14C. The distribution of 14C from upper and lower leaves was most alike in young vegetative plants of L. perenne. At later stages of development of both species, the terminal meristem and stem received most 1414C from the upper leaf, while roots and tillers received mos 1414C from the oldest leaf at the base of the shoot.  相似文献   

4.
Labelled carbon dioxide was supplied for 22 hrs to a leaf of the leader or to the lateral shoot in two-year-old apple seedlings. The distribution of radioactive assimilates within the plant following this treatment was investigated by using radioautography. The transport of labelled assimilates from the young leaf of the leader was very meagre and affected only parts of the stem and the leaves situated in the close vicinity of the treated leaf. The14C-labelled assimilates from the mature leaf of the leader were transported in a considerable amount to the apex and to the other leaves of the leader. They were also found in an appreciable amount in the stem and the roots, as well as in some lateral shoots. After supplying14CO2 to the lateral shoot remarkable transport of labelled assimilates was observed. Radioactivity was detected in the tip and in the youngest leaves of the leader, as well as in the roots. Their path in the stem was studied by dissecting the plant and examining the cross section from each internode. This method revealed that the assimilates from the treated leaf or shoot were transported downward only on one side of the stem in a helical pattern. The lateral shoots situated on the radioactive side of the stem were also labelled, whereas those situated on the opposite (non-radioactive) side were not labelled.  相似文献   

5.
Single leaves, ears, or shoots of timothy (Phleum pratense L.)were exposed in light to 14CO2, then left overnight, after whichthe plants were autoradiographed. The following conclusionswere drawn. Actively growing leaves retain all their assimilatesand import from older ones. Fully expanded leaves export butdo not import assimilates. Export begins before leaf expansionis complete, so import and export may for a time be simultaneous.Exports go at first to younger leaves and to roots, accumulatingat meristems. At later stages, exports move downwards ratherthan upwards. Buds and small tillers import from older shoots,but large tillers do not import from other shoots or exportto other large ones. Ears assimilate while still green, andimport assimilates from their associated flag leaves. Exportsfrom other leaves on flowering stems move downwards. These findings agree in general with those from other plants:they are discussed in relation to the vascular system of thegrass plant, and the need for further studies, particularlyquantitative ones, is emphasized.  相似文献   

6.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

7.
Plants of the biennial Arctium tomentosum were grown from seedto seed-set in an open field under three different treatments:control plants receiving full light intensity, plants with aleaf area reduced by 45 per cent, and shaded plants receivingonly 20 per cent of natural illumination. At various stagesof development the youngest fully expanded leaf of one plantin each treatment was exposed to 14CO2 for half an hour. Subsequentdistribution of labelled assimilates in various plant partswas determined after eight hours. In the first year, the mostdominant sink was the tap root irrespective of variation inassimilate supply. During the production of new vegetative growthin the second season, a larger amount of radioactive photosynthatewas recovered from above ground parts, especially during formationof lateral branches. Seed filling consumed 80–90 per centof labelled carbon exported from the exposed leaf. In the secondyear, the most pronounced difference between treatments wasin the degree of apical dominance, being highest in shaded plantsand lowest in the plants with cut leaves. Results from 14C experimentsagreed fairly well with a ‘partitioning coefficient’derived from a growth analysis of plants grown independentlyunder the same experimental conditions. Reasons for discrepanciesbetween the 14C results and the partitioning coefficient arediscussed. Arctium tomentosum, burdock, variation in assimilate supply, assimilate distribution, 14CO2, labelling, growth analysis  相似文献   

8.
The distribution of labelled assimilates following the assimilation of 14CO2 in groundnut (Arachis hypogaea L.) by single leaves at different nodes was investigated using autoradiographic technique. In the vegetative stage growing leaves assimilated most of the 14carbon, while the fully expanded leaves exported most of its radiocarbon to the apices, young expanding leaves and to the roots. Soon after the formation of the pegs and the growth and development of the pods, the developing pods become the major sinks. At this stage translocation from the foliage of each branch was restricted mostly to the pods produced by this branch.  相似文献   

9.
A quantitative analysis of the 14C-labelled assimilate suppliedby the expanded leaves on the primary shoot to growing leaves,stem, lateral shoots (branches or stolons) and roots in redand white clover was conducted during vegetative growth. Stem growth of the primary shoot was inhibited in both cloversand utilized no energy resources. The growing leaves at theprimary shoot apex of white clover imported 4 per cent of theshoot's assimilate compared with 10 per cent in red clover.At the basal end of the primary shoot, the tap root of whiteclover imported 16 per cent of the shoot's assimilate comparedwith 22 per cent in red clover. Branches in red clover and stolonsin white clover were by far the largest sinks for primary shootassimilate, importing 39 per cent and 63 per cent of the labelledassimilate, respectively. Analyses of the translocation of assimilate from individualprimary shoot leaves demonstrated that in both clovers olderleaves exported more of their assimilate to branches or stolons,whereas younger leaves exported more of their assimilate toroots, and possibly in white clover, to growing leaves at thetip of the shoot. Of the labelled assimilate exported to branchesor stolons, each primary shoot leaf exported preferentiallyto the branch or stolon in its own axil, but in addition exportedsubstantial quantities of assimilate to all other axillary shoots,particularly those arising from basal axils where the subtendingleaf had died. Trifolium repens, Trifolium pratense, red clover, white clover, assimilate partitioning, perennation  相似文献   

10.
Podostemaceae are unusual aquatic angiosperms adapting to extreme habitats, i.e., rapids and waterfalls, and have unique morphologies. We investigated the developmental anatomy of reproductive shoots scattered on crustose roots of Hydrobryum japonicum by scanning electron microscopy and using semi-thin serial sections. Two developmental patterns were observed: bracts arise either continuously from an area of meristematic cells that has produced leaves, or within differentiated root ground tissue beneath, and internal to, leaf base scars after an interruption. In both patterns, the bract primordia arise endogenously at the base of youngest bracts in the absence of shoot apical meristem, involving vacuolated-cell detachment to each bract separately. The different transition patterns of reproductive shoot development may be caused by different stages of parental vegetative shoots. The floral meristem arises between the two youngest bracts, and is similarly accompanied by cell degeneration. In contrast, the floral organs, including the spathella, arise exogenously from the meristem. Bract development, like vegetative leaf development, is unique to this podostemad, while floral-organ development is conserved.  相似文献   

11.
Yamashita, T. 1987. Modulated degradation of ribulose ftisphosphatecarboxylase in leaves on top-pruned shoots of the mulberry tree(Morus alba L.).—J. exp. Bot. 38: 1957–1964. The effects of pruning shoot tops on the synthesis and degradationof ribulose 1,5–Wsphosphate carboxylase (RuBPCase) inleaves on remaining shoots were investigated in mulberry trees.Leucine labelled with 14C was fed to leaf discs from field-grownmulberry trees and 14C incorporation into RuBPCase was examined.Proportion of 14C in RuBPCase to leucine–14C absorbedby leaf discs was remarkably lowered by top-pruning, thoughoccasionally a slight increase was observed soon after pruning.Yet RuBPCase content in leaves on top-pruned shoots became progressivelyhigher than that in leaves on intact shoots. Changes in 14Cin Ru1BPCase in leaves of mulberry saplings previously fed 14CO2were followed. Following 14CO2 feeding, the attainment of themaximal level of 14C in RuBPCase was retarded by top-pruning.The highest level of 14C in RuBPCase was maintained in leaveson top-pruned shoots but decreased in leaves on intact shoots.Specific radioactivity in RuBPCase continued to increase inleaves on top-pruned shoots even after attaining a maximum levelin the control leaves. These facts suggest that the increasein RuBPCase by top-pruning results from a cessation of its degradationfor the remobilization of nitrogen for newly developing leaveson shoot tops. Key words: RuBP carboxylase, shoot pruning, mulberry (Morus alba)  相似文献   

12.
Explants of stem, leaves, roots, and cotyledons from etiolatedaxenically grown Vicia faba seedlings were cultured on a rangeof media. Shoot organogenesis was only obtained with nodal stemand cotyledonary node explants when cultured on MS medium with3% sucrose, 2.0 mg 1–1 BAP and 02 mg 1–1 NAA. Callusproliferation accompanied shoot organogenesis from nodal stemexplants. Successive subculture of nodal stem callus resultedin proliferation of regenerative callus which contained severalshoot bud initials. The capacity for shoot regeneration fromthis callus was maintained for 9 months. Histological studiesreveal de novo formation of meristematic centres in callus andtheir further development into bud primordia. High frequencyrooting of these adventitious shoots was obtained on half-strengthMS medium with 1.5% sucrose, 0.1 mg 1–1 NAA and 0.5 mg1–1 kinetin. Key words: Vicia faba, adventitious shoots, axillary shoots, de novomeristem formation, organogenesis, tissue culture  相似文献   

13.
The uptake and distribution of 65Zn and 54Mn by wheat (Triticumaestivum cv. Aroona) was investigated. Plantswere grown in achelate-buffered nutrient solution with either sufficient Znand Mn, low Zn or low Mn. A single representative seminal rootfrom 14-d-old and 42-d-old plants was dual-labelled with 65Znand 54Mn. The 14-d-old plants were harvested every 10 min from10–140 min of labelling, whilst the 42-d-old plants wereharvested after 2 h of labelling. At harvest, each plant wasseparated into leaves, main stem, unexposedroots, and tillers.In addition, the crown was separatedfrom the stem in the 14-d-oldplants In the control plants labelled at 14 d, 65Zn was firstdetectedand accumulated in the crown of the roots after 40–60min. Labelled Zn was then detected in the stem, followed bythe leaves. The oldest and youngest leaves received less 65Znthan the second and third oldest leaves. The plants grown underlow Zn conditions accumulated more 65Zn in their older leavesand transferred 63Zn to the unexposed roots. Distribution of54Mn was similar in the controls to that of 65Zn, except theolder leaves received no HMn, At the second harvest, a similardistribution pattern of 65Zn and 54Mn was observed with regardto leaf age. Large amounts of 65Zn and 54Mn were detected withinthe unexposed roots of all treatments. It is suggested thatthe distribution of root-supplied Zn and Mn may be determinedby micronutrient status and its relationship with leaf transpirationrates. Key words: Distribution, manganese, vegetative growth, wheat, zinc  相似文献   

14.
The partition of 14C labelled current assimilates to root insimulated swards of Lolium perenne cv. S24 was measured duringthe transition from vegetative growth in autumn to reproductivegrowth in spring under close to natural conditions of lightand temperature. Assimilate partitioning was also measured in‘established’ swards cut three times during thegrowing season and in vegetative ‘seedling’ swardsgrowing in autumn and in spring. All measurements were madewhen the swards had achieved more than 90 per cent light interception,and all swards were abundantly supplied with water and mineralnutrients. During autumn there was a gradual decrease in the proportionof assimilates partitioned to the roots in both the ‘established’and the ‘seedling’ swards. In the established swards,partition to roots was low over winter, increased during earlyspring, but decreased dramatically, later in the spring, whenstem elongation began. In contrast, in the unvernalized vegatativeseedling swards in spring, partition to roots remained high. The seasonal pattern of assimilate partitioning is consideredin relation to changes in the natural environment and the rateat which the crop fixed carbon in photosynthesis. A decreasein the proportion of assimilates partitioned to roots duringlate spring was significant in increasing the production ofshoot at that time but seasonal differences in partition contributedvery little to the marked differences in shoot growth betweenthe spring and autumn crop. Lolium perenne L., perennial ryegrass, partition of assimilates, flowering  相似文献   

15.
PATE  J. S. 《Annals of botany》1966,30(1):93-109
In Pisum arvense, the amides and amino-acids normally suppliedto the shoot in the transpiration stream transfer carbon toprotein largely throught the amino-acids, aspartic acid (+asparagine),glutarnic acid (+glutamine), threonine, lysine, arginine, andproline. Carbon from carbon dioxide enters the protein of photosynthesizingtissues through an essentially complementary set of amino-acidsincluding glycine, alanine, serine, valine, and the aromaticamino-acids tyrosine, phenylalnine, and histidine. Young tissuesof the shoot synthesize certain amino-acids de novo by metabolismof sugars supplied from photosynthesizing leaves. Each mature leaf on a shoot contributes carbon to current synthesisof protein at the shoot apex. Sucrose accounts for more than90 per cent of the labelled carbon leaving any age of leaf whichhas been fed with 14CO2. Upper leaves supply labelled assimilatesdirectly to the shoot apex, and the radiocarbon from these assimilatesis subsequently incorporated into a wide range of amino-acidunits of protein. The majority of the labelled assimilates exportedfrom a lower leaf move downwards to the root and nodules and,in consequence, the amino-acids and amides associated with rootmetabolism are strongly represented among the compounds eventuallylabelled in the apical region of the shoot.  相似文献   

16.
CLIFFORD  P. E. 《Annals of botany》1977,41(3):605-615
The control of tiller bud growth during reproductive developmentwas investigated in experimental plants ofLolium multiflorumLam. cv. Westerwoldicum that were reduced to a main axis havinga developing but unemerged ear, elongating stem internodes,a series of expanded leaves, slow-growing tiller buds and aroot system. Isolation of the ear by excision of its base, ordecapitation so as to remove the ear together with the upperleaves, promoted the movement of 14C-assimilates to tiller buds,decapitation being the more effective treatment. Applicationof 0.1 per cent indol–3yl-acetic acid (IAA) to cut tissuesof decapitated plants diverted 14C-assimilates to upper internodesbut did not reduce import by buds, whereas application of 1.0per cent IAA both diverted labelled assimilates to upper internodesand reduced bud import. Radioactivity from [14C] IAA appliedto the upper leaves or to the ear base was recovered from budsin very small amounts; larger amounts were recovered from budsfollowing the application of labelled IAA to an elongating internode,especially from the bud at the base of the treated internode.It is suggested that tiller bud suppression may be influencedby the movement of inhibitory levels of auxin into buds fromnearby elongating stem internodes, whose activity in turn maybe controlled by the developing inflorescence and upper leaves.  相似文献   

17.
WOLEDGE  J. 《Annals of botany》1979,44(2):197-207
The photosynthetic capacity of newly expanded leaves of vernalizedor non-vernalized plants of S24 perennial ryegrass (Lolium perenneL.), grown in long or short photoperiods, was measured in twoexperiments. In the first, leaves were protected from shadingduring development, while in the second, the natural shade ofneighbouring tillers in a sward was allowed. In the first experiment there was little effect of vernalization,day length or flowering, and leaves in all treatments had photosyntheticrates at 250 W m–2 of between 28 and 32 mg CO2 dm–2h–1.In the second experiment the photosynthetic rate of successiveleaves fell as sward leaf area increased. This downward trendwas reversed, however, in flowering tillers in the vernalizedlong-day treatment, while in the other treatments, which didnot flower, photosynthetic capacity continued to fall. It isconcluded that the leaves of reproductive tillers have highphotosynthetic capacities because stem extension carries themto the top of the canopy where they are well illuminated duringexpansion. Lolium perenneL, ryegrass, photosynthetic capacity, flowering, shading, vernalization  相似文献   

18.
The relative assimilatory activity of the inflorescence, itsindividual components, and the leaves of flowering tillers ofPoa annua L. and Lolium perenneL. was determined over the periodfrom inflorescence emergence to seed shedding. The pattern of14CO2 fixation was similar for both species and the inflorescencewas by far the most important assimilatory organ of the reproductivetiller, particularly over the latter period of seed developmentas leaf senescence progressed. With the exception of the seedsall parts of the inflorescence showed significant assimilatoryactivity and the lemmas and paleas accounted for 40–50per cent of the total 14C fixed by the inflorescence in bothspecies. The importance of the grass inflorescence as a photosyntheticstructure is discussed in relation to similar studies on cereals. Poa annua, Lolium perenne, carbon dioxide assimilation, inflorescence  相似文献   

19.
The carbon allocation to current-year shoots of the deciduous Vaccinium uliginosum L. and the evergreen V. vitis-idaea L. was studied in a field experiment using 14C. During the first week after labelling, 0–50% and 30–80% of the initially assimilated 14C was lost in V. vitis-idaea and V. uliginosum respectively. Later on, the losses were smaller. After leaf fall in V. uliginosum , 30, 10 and 8% of the initially assimilated 14C was recovered in the abscised leaves, in plants labelled 1 July, 1 August and 1 September, respectively. The amounts found in the old V. vitis-idaea leaves the year after labelling were 33, 20 and 10%. Only traces of past-year assimilates were found in the current-year V. vitis-idaea leaves, while it was estimated that the V. uliginosum leaves contained 10–15% of the past-year label. It is concluded that V. vitis-idaea is mainly dependent on early summer assimilates - produced by leaves that have overwintered – for the current year shoot growth, while past-years' assimilates probably make an important contribution to the leaf expansion in V. uliginosum. When fruits occurred, a large fraction of the 14C assimilates was allocated to them.  相似文献   

20.
The effects of excess salinity and oxygen deficiency on growthand solute relations in Zea mays L. cv. Pioneer 3906 were examinedin greenhouse experiments. The roots of plants 14 d old growingin nutrient solution containing additions of NaCl in the range1.0–200 mol m–3 were either exposed to a severedeficiency of O2 by bubbling with nitrogen gas (N2 treatment),or maintained with a supply of air (controls), for a periodof 1–7 d. The threshold NaCl concentration resulting inappreciable inhibition of leaf extension, and shoot f. wt gainin controls was between 10 and 25 mol m–3. At 25 mol m–3NaCl the ratio of Na+/K+ transported to shoots was about 20times greater than in plants in 1.0 mol m–3 NaCl. Theeffect of addition of NaCl to the nutrient solution was to enhanceNa+ movement but simultaneously depress the rate of K+ transportto shoots (per g f. wt roots). Interactions between NaCl levels and aeration treatment wereshown by analyses of variance to be statistically significantfor leaf extension, shoot and root f. wt gains, Na+ and K+ concentrationsin shoots and roots. When roots were N2-treated, shoot and rootgrowth were depressed, the effect of aeration treatment beinggreatest at NaCl concentrations of 50 mol m–3 or less.Additionally, N2-treatment greatly accelerated Na- transportto shoots while depressing K+ transport still further, so thatat 10 mol m–3 NaCl the ratio Na+/K+ acquired by the shootswas 230 times greater than in controls. Over the concentrationrange 1.0 to 50 mol m–3 NaCl, the ratio Na+/K+ transportedto shoots by anoxic roots increased by a factor of 860. Mechanisms controlling changes in solute flux to the shoot,and the significance in relation to plant tolerance of excesssalts or oxygen deficiency are discussed. Anaerobic, corn, flooding, maize, oxygen-deficiency, salinity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号