首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

2.
Villanueva M  Wightman RM 《Biochemistry》2007,46(12):3881-3887
Dopaminergic receptors are found on bovine adrenal chromaffin cells and have been implicated in the facilitation of an inward calcium current [Artalejo et al., (1990) Nature 348, 239-242] that could enhance release. However, previous studies using incubations of long duration (minutes) with dopaminergic receptor antagonists have found instead an inhibition of catecholamine release. In this work we used brief (subsecond) chemical depolarizing stimuli to reexamine the role of dopaminergic receptors on exocytosis from bovine adrenal chromaffin cells. Responses to consecutive depolarizing stimuli were compared using amperometry to monitor vesicular release events and intracellular fura-2 to examine Ca2+ dynamics within individual cells. Restoration of intracellular Ca2+ levels to their initial values following exposure to 60 mM K+ was found to be prolonged unless the exposure was brief (0.5 s) and the cells were maintained at 37 degrees C. However, with these optimum conditions, a second stimulation evoked more exocytotic events than the first. This effect was blocked by SCH-23390, a D1 antagonist, in a dose dependent fashion, but not by raclopride, a D2 antagonist. The D1 agonist, SKF-38393, enhanced the number of exocytotic events as did prior exposure of the cell to epinephrine. Taken together, the data indicate that released catecholamines can enhance their own release by interaction with a D1-like receptor on bovine adrenal chromaffin cells.  相似文献   

3.
We reported earlier that adenine nucleotides and adenosine inhibit acetylcholine-induced catecholamine secretion from bovine adrenal medulla chromaffin cells. In this article, we used an adenosine analogue, N6-L-phenylisopropyladenosine (PIA), to study the mechanism underlying inhibition of catecholamine secretion by adenosine. PIA inhibits secretion induced by a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium, or by elevated external K+. The half-maximal effect on 1,1-dimethyl-4-phenylpiperazinium-induced secretion occurred at approximately 5 x 10(-5) M. The inhibition is immediate and reversible. Fura-2 measurements of cytosolic free Ca2+ indicate that PIA inhibits Ca2+ elevation caused by stimulation; measurements of 45Ca2+ influx show that PIA inhibits uptake of Ca2+. PIA does not inhibit calcium-evoked secretion from digitonin-permeabilized cells, nor does PIA cause any significant change in the dependence of catecholamine secretion on calcium concentration. These data suggest that inhibition by PIA occurs at the level of the voltage-sensitive calcium channel.  相似文献   

4.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

5.
We showed earlier that insulin stimulated sugar transport in adrenal chromaffin cells (Bigornia, L. and Bihler, I. Biochim. Biophys. Acta 885, 335-344). Transport regulation and its Ca2+ -dependence was further investigated in isolated bovine adrenal chromaffin cells, serving as a model of a homogeneous neuronal cell population. Uptake of the nonmetabolizable glucose analogue, 3-O-methyl-D-glucose was stimulated by hyperosmolar medium, and this effect was abolished in the absence of external Ca2+, or depressed in the presence of La3+ or the slow Ca2+ channel blocker methoxyverapamil. Basal transport was also stimulated by factors (acetylcholine, carbamylcholine, low-Na+ medium), which cause Ca2+ -dependent catecholamine release, and these effects were abolished in Ca2+ -free medium. In addition insulin, acetylcholine, hyperosmolar and low-Na+ medium significantly increased 45Ca uptake. Thus, glucose transport in adrenal chromaffin cells was stimulated by insulin and hyperosmolarity in a Ca2+ -dependent manner, as in muscle. Sensitivity to secretory stimuli, a regulatory feature perhaps characteristic of this cell type, was also demonstrated. In contrast to muscle, sugar transport was not affected by Na+ -pump inhibition, metabolic inhibitors or the Na+ ionophore monensin, suggesting that Ca2+ influx by Na+/Ca2+ exchange does not play a significant role in the activation of sugar transport in chromaffin cells.  相似文献   

6.
Substance P is known to modulate acetylcholine-induced catecholamine release from adrenal chromaffin cells. To investigate the mechanisms involved in this modulation, the present study examined the effects of substance P on net 45Ca2+ fluxes in cultures of bovine adrenal chromaffin cells. Two effects of substance P were observed: (1) Substance P inhibited carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux and (2) substance P protected against desensitization of carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux. Thus substance P modulates two other cholinergic responses, 45Ca2+ uptake and 45Ca2+ efflux, in a manner similar to its modulation of catecholamine release. The results also indicate that substance P's inhibition of net carbachol-induced 45Ca2+ uptake is due to inhibition of 45Ca2+ uptake rather than enhancement of 45Ca2+ efflux. Substance P almost completely inhibited carbachol-induced 45Ca2+ uptake in both Na+-containing and Na+-free media, suggesting that substance P can inhibit the uptake of 45Ca2+ induced by carbachol regardless of whether 45Ca2+ is taken up through voltage-sensitive or acetylcholine receptor-linked channels. However, substance P produced only a small inhibition of K+-induced 45Ca2+ uptake, indicating that substance P does not interact directly with voltage-sensitive Ca2+ channels. In addition, substance P's inhibition of carbachol-induced 45Ca2+ uptake was noncompetitive with respect to Ca2+, were unable to overcome substance P's inhibition of [3H]-norepinephrine ( [3H]NE) release. It is concluded that substance P does not interact directly with Ca2+ channels in bovine adrenal chromaffin cells.  相似文献   

7.
Abstract: Previous studies have suggested that activation of D2-like dopamine receptors inhibits catecholamine secretion from adrenal chromaffin cells. The purpose of this study was to determine whether the activation of D1-like receptors on chromaffin cells affects either catecholamine release from the cells or the inhibition of secretion by D2-like dopamine receptors. Both D1- and D2-selective agonists inhibited secretion elicited by dimethylphenylpiperazinium (DMPP), veratridine, and high K+ levels. The D1-selective agonists 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (Cl-APB) and SKF-38393 inhibited DMPP-stimulated catecholamine secretion in a concentration-dependent manner; 50% inhibition was obtained with ~10 µM Cl-APB and ~100 µM SKF-38393. Of the D2-selective agonists, bromocriptine was a more potent inhibitor of DMPP-stimulated catecholamine release than was quinpirole. The inhibition of secretion caused by Cl-APB or SKF-38393 was additive with the inhibition caused by bromocriptine. Pertussis toxin treatment (50 ng/ml, 18 h) attenuated the inhibitory effect of D2-selective, but not D1-selective, dopamine agonists. In addition, forskolin-stimulated adenylyl cyclase activity was inhibited by D2-selective, but not D1-selective, agonists. Neither D1- nor D2-selective agonists stimulated adenylyl cyclase activity in the cells, although cyclase activity was stimulated by forskolin, carbachol, and vasoactive intestinal peptide. DMPP-stimulated Ca2+ uptake was inhibited by both D1- and D2-selective dopamine agonists. PCR analysis was used to determine which of the dopamine receptor subtypes within the D1-like and D2-like subfamilies was responsible for the observed inhibition. PCR analysis indicated that mRNA for only D4 and D5 dopamine receptor subtypes was present in chromaffin cells. These combined data suggest that D1- and D2-selective agonists inhibit Ca2+ uptake and catecholamine secretion by activating D4 and D5 dopamine receptors on chromaffin cells.  相似文献   

8.
Histamine stimulates catecholamine release and tyrosine hydroxylase activity in a Ca(2+)-dependent manner in bovine adrenal chromaffin cells. The role of voltage-sensitive Ca2+ channels in these two responses has been investigated. Using an EC50 concentration of histamine, 1 microM, catecholamine release was enhanced by (+/-)BayK8644, and partially inhibited by nitrendipine and omega-agatoxin IVA, blockers of L- and P/Q-type Ca2+ channels. omega-Conotoxin GVIA gave small and variable inhibitory effects. With a maximal histamine concentration, 10 microM, similar results were obtained except that now omega-conotoxin GVIA reliably reduced release. In contrast, neither (+/-)BayK8644 nor any of the individual Ca2+ channel antagonists had any significant effect on tyrosine hydroxylase (TOH) activation induced by either an EC50 or a maximal concentration of histamine. When high concentrations of nitrendipine, omega-conotoxin GVIA and omega-agatoxin IVA were combined with omega-conotoxin MVIIC (a non-selective blocker of N, P and Q channels) to block voltage-sensitive Ca2+ channels in these cells, release induced by K+ depolarization was completely blocked. Release caused by histamine, however, was substantially reduced but not abolished. The combination of antagonists also only partially inhibited TOH activation by histamine. The results show that the G protein-coupled receptor agonist histamine activates several different types of voltage-sensitive Ca2+ channels in chromaffin cells to mediate its cellular effects. Histamine may also activate additional pathways for Ca2+ entry. The results also suggest that the manner by which Ca2+ controls release and TOH activation once it has entered chromaffin cells through these channels are different.  相似文献   

9.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

10.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

11.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

12.
We have reported recently that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+, K(+)-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. Here we examined the involvement of a GTP-binding protein(s) in PGE receptor-induced responses by using NaF. In the presence of Ca2+ in the medium, NaF stimulated the formation of all three inositol phosphates, i.e., inositol monophosphate, bisphosphate, and trisphosphate, linearly over 30 min in a dose-dependent manner (15-30 mM). This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. NaF also induced catecholamine release from chromaffin cells, and the dependency of stimulation of the release on NaF concentration was well correlated with those of NaF-enhanced inositol phosphate formation and increase in cytosolic free Ca2+. Although the effect of NaF on PGE2-induced catecholamine release in the presence of ouabain was additive at concentrations below 20 mM, there was no additive effect at 25 mM NaF. Furthermore, the time course of catecholamine release stimulated by 20 mM NaF in the presence of ouabain was quite similar to that by 1 microM PGE2, and both stimulations were markedly inhibited by amiloride, with half-maximal inhibition at 10 microM. Pretreatment of the cells with pertussis toxin did not prevent, but rather enhanced, PGE2-induced catecholamine release over the range of concentrations examined. These results demonstrate that NaF mimics the effect of PGE2 on catecholamine release from chromaffin cells and suggest that PGE2-evoked catecholamine release may be mediated by the stimulation of phosphoinositide metabolism through a putative GTP-binding protein insensitive to pertussis toxin.  相似文献   

13.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

14.
Pretreatment of cultured bovine adrenal chromaffin cells with pertussis toxin facilitated nicotine-induced catecholamine release. This facilitation was correlated with the ability of the toxin to catalyze the ADP-ribosylation of an approximately 40-kDa membrane protein. The actions of the toxin were reversed by isonicotinamide, an inhibitor of ADP-ribosylation. Catecholamine release due to high K+ and muscarine was also enhanced by pertussis toxin. In all cases, 45Ca2+ uptake was unaltered in cells treated with the toxin. These results suggest that ADP-ribosylation of a 40-kDa membrane protein facilitates catecholamine release from bovine chromaffin cells without affecting 45Ca2+ uptake.  相似文献   

15.
The purpose of the present study is to clarify the effects of hypoxia on catecholamine release and its mechanism of action. For this purpose, using cultured bovine adrenal chromaffin cells, we examined the effects of hypoxia on high (55 mM) K(+)-induced increases in catecholamine release, in cytosolic free Ca2+ concentration ([Ca2+]i), and in 45Ca2+ uptake. Experiments were carried out in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). High K(+)-induced catecholamine release was inhibited by hypoxia to approximately 40% of the control value, but on reoxygenation the release returned to control levels. Hypoxia had little effect on ATP concentrations in the cells. In the hypoxic medium, [Ca2+]i (measured using fura-2) gradually increased and reached a plateau of approximately 1.0 microM at 30 min, whereas the level was constant in the control medium (approximately 200 nM). High K(+)-induced increases in [Ca2+]i were inhibited by hypoxia to approximately 30% of the control value. In the cells permeabilized by digitonin, catecholamine release induced by Ca2+ was unaffected by hypoxia. Hypoxia had little effect on basal 45Ca2+ uptake into the cells, but high K(+)-induced 45Ca2+ uptake was inhibited by hypoxia. These results suggest that hypoxia inhibits high K(+)-induced catecholamine release and that this inhibition is mainly the result of the inhibition of high K(+)-induced increases in [Ca2+]i subsequent to the inhibition of Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

16.
The adrenal chromaffin cells synthesize and release catecholamine (mostly epinephrine and norepinephrine) and different peptides, such as the neuropeptide Y (NPY). NPY stimulates catecholamine release through NPY Y1 receptor in mouse chromaffin cells. The aim of our study was to determine the intracellular signaling events coupled to NPY Y1 receptor activation that lead to stimulation of catecholamine release from mouse chromaffin cells. The stimulatory effect of NPY mediated by NPY Y1 receptor activation was lost in the absence of extracellular Ca2+. On the other hand, inhibition of nitric oxide synthase and guanylyl cyclase also decreased the stimulatory effect of NPY. Moreover, catecholamine release stimulated by NPY or by the nitric oxide donor (NOC-18) was inhibited by mitogen-activated protein kinase (MAPK) and protein kinase C inhibitors. In summary, in mouse chromaffin cells, NPY evokes catecholamine release by the activation the NPY Y1 receptor, in a Ca2+-dependent manner, by activating mitogen-activated protein kinase and promoting nitric oxide production, which in turn regulates protein kinase C and guanylyl cyclase activation.  相似文献   

17.
The effects of leucine- and methionine-enkephalin, opiate peptides, on Ca2+ efflux from cultured bovine adrenal chromaffin cells were examined. These enkephalins stimulated the efflux of 45Ca2+ from cells in a concentration-dependent manner (10(-8) M-10(-6) M). Leucine-enkephalin did not increase the intracellular free Ca2+ level, 45Ca2+ uptake, catecholamine secretion, cAMP level or cGMP level. The peptide-stimulated 45Ca2+ efflux was not inhibited by incubation in Ca2+-free medium, but was inhibited by incubation in Na+-free medium. These results indicate that enkephalins stimulate extracellular Na+-dependent 45Ca2+ efflux from cultured bovine adrenal chromaffin cells, probably by stimulating membrane Na+/Ca2+ exchange.  相似文献   

18.
Chromaffin cells of bovine adrenal medulla release catecholamines in response to activation of nicotinic ACh receptors which open voltage-sensitive calcium channels. Catecholamine secretion by exocytosis requires an increase in cytosolic free calcium. The cells also possess muscarinic ACh receptors but muscarinic agents do not provoke catecholamine release. Quin-2 studies show that they do not increase cytosolic free Ca2+ concentration, but unlike the nicotinic agents, they cause phosphoinositide hydrolysis. Muscarinic stimulation leads to rapid loss of labelled phosphatidylinositol 4-phosphate and of phosphatidylinositol 4,5-bisphosphate. At the same time there is release of inositol trisphosphate, inositol bisphosphate and inositol phosphate. In a number of other cells inositol trisphosphate may act as a second messenger releasing Ca2+ from storage sites in the endoplasmic reticulum but this is not its function in bovine chromaffin cells.  相似文献   

19.
Abstract: Recent studies have demonstrated that D1-selective and D2-selective dopamine receptor agonists inhibit catecholamine secretion and Ca2+ uptake into bovine adrenal chromaffin cells by receptor subtypes that we have identified by PCR as D5, a member of the D1-like dopamine receptor subfamily, and D4, a member of the D2-like dopamine receptor subfamily. The purpose of this study was to determine whether activation of D5 or D4 receptors inhibits influx of Na+, which could explain inhibition of secretion and Ca2+ uptake by dopamine agonists. D1-selective agonists preferentially inhibited both dimethylphenylpiperazinium- (DMPP) and veratridine-stimulated 22Na+ influx into chromaffin cells. The D1-selective agonists chloro-APB hydrobromide (CI-APB; 100 µ M ) and SKF-38393 (100 µ M ) inhibited DMPP-stimulated Na+ uptake by 87.5 ± 2.3 and 59.7 ± 4.5%, respectively, whereas the D2-selective agonist bromocriptine (100 µ M ) inhibited Na+ uptake by only 22.9 ± 5.0%. Veratridine-stimulated Na+ uptake was inhibited 95.1 ± 3.2 and 25.7 ± 4.7% by 100 µ M CI-APB or bromocriptine, respectively. The effect of CI-APB was concentration dependent. A similar IC50 (∼18 µ M ) for inhibition of both DMPP- and veratridine-stimulated Na+ uptake was obtained. The addition of 8-bromo-cyclic AMP (1 m M ) had no effect on either DMPP- or veratridine-stimulated Na+ uptake. These observations suggest that D1-selective agonists are inhibiting secretagogue-stimulated Na+ uptake in a cyclic AMP-independent manner.  相似文献   

20.
Besides cholinergic regulation, catecholamine secretion from adrenal chromaffin cells can be elicited and/or modulated by noncholinergic neurotransmitters and hormones. This study was undertaken to investigate the influence of somatostatin and octreotide on [3H]MPP+ secretion evoked by KCl or cholinergic agents, from bovine adrenal chromaffin cells. The release of [3H]MPP+ was markedly increased by excess KCl (50 mM), acetylcholine (50 microM-10 mM) and by the nicotinic agonists, nicotine (5-100 microM) and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP, 10-100 microM), but not by the muscarinic agonist, pilocarpine (10-100 microM). Acetylcholine-evoked release of [3H]MPP+ from these cells was mainly mediated by nicotinic receptors: a) nicotine and DMPP stimulated the release of [3H]MPP+, b) a nicotinic antagonist, hexamethonium, markedly blocked the acetylcholine-evoked response and c) pilocarpine was devoid of effect on [3H]MPP+ secretion. At all concentrations tested, somatostatin and octreotide interfered neither with [3H]MPP+ basal release nor with KCl-induced release of [3H]MPP+. However, somatostatin (0.01-0.3 microM) increased the release of [3H]MPP+ induced by a high concentration of acetylcholine (10 mM). Octreotide (1-10 microM) had no effect. These results, showing that somatostatin potentiates acetylcholine-induced [3H]MPP+ release, support the hypothesis that somatostatin may increase the release of catecholamines from adrenal medullary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号