首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
4.
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ~80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.  相似文献   

5.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus in the Nairoviridae family within the Bunyavirales order of viruses. Crimean-Congo hemorrhagic fever (CCHF) is the most widespread among tick-borne human viral diseases. It is endemic in many areas of Africa, Asia, the Middle East, in the Balkans, Russia and countries of the former Soviet Union. The confirmed CCHF cases were seen in Spain in 2016 to signify expansion of the virus into new geographical areas. CCHFV causes a viral human disease characterized by sudden onset of fever, headache, abdominal pain, nausea, hypotension, hemorrhage, and hepatic dysfunction with fatality rates up to 30%. Currently, there are no spesific treatments or licensed vaccines available for CCHFV. The absence of a susceptible animal model for CCHFV infection was severely hindered work on the development of vaccines. However, several animal models of CCHFV infection have been recently developed and used to assess vaccine efficacy. In this study, we have used the transiently immune-suppressed (IS) mouse model that MAb-5A3 was used to block IFN-I signaling in immune intact, wild-type mice at the time of CCHFV infection to evaluate the immune response and efficacy of the cell culture based and the mouse brain derived inactivated vaccines against CCHFV. Both vaccine preparations have provided complete protection but the cell culture based vaccine more effectively induced to CCFHV spesific antibodies and T cell responses. This is the first comparison of the cell culture based and the mouse brain derived vaccines for assessing the protective efficacy and the immunogenicity in the IS mouse CCHFV model.  相似文献   

6.
Crimean-Congo hemorrhagic fever virus (CCHFV) causes viral hemorrhagic fever with high case-fatality rates and is geographically widely distributed. Due to the requirement for a biosafety level 4 (BSL-4) laboratory and the lack of an animal model, knowledge of the viral pathogenesis is limited. Crimean-Congo hemorrhagic fever (CCHF) is characterized by hemorrhage and vascular permeability, indicating the involvement of endothelial cells (ECs). The interplay between ECs and CCHFV is therefore important for understanding the pathogenesis of CCHF. In a previous study, we found that CCHFV-infected monocyte-derived dendritic cells (moDCs) activated ECs; however, the direct effect of CCHFV on ECs was not investigated. Here, we report that ECs are activated upon infection, as demonstrated by upregulation of mRNA levels for E-selectin, vascular cell adhesion molecule 1 (VCAM1), and intercellular adhesion molecule 1 (ICAM1). Protein levels and cell surface expression of ICAM1 responded in a dose-dependent manner to increasing CCHFV titers with concomitant increase in leukocyte adhesion. Furthermore, we examined vascular endothelial (VE) cadherin in CCHFV-infected ECs by different approaches. Infected ECs released higher levels of interleukin 6 (IL-6) and IL-8; however, stimulation of resting ECs with supernatants derived from infected ECs did not result in increased ICAM1 expression. Interestingly, the moDC-mediated activation of ECs was abrogated by addition of neutralizing tumor necrosis factor alpha (TNF-α) antibody to moDC supernatants, thereby identifying this soluble mediator as the key cytokine causing EC activation. We conclude that CCHFV can exert both direct and indirect effects on ECs.  相似文献   

7.
Bats are known to harbor a number of emerging and re-emerging zoonotic viruses, many of which are highly pathogenic in other mammals but result in no clinical symptoms in bats. The ability of bats to coexist with viruses may be the result of rapid control of viral replication early in the immune response. IFNs provide the first line of defense against viral infection in vertebrates. Type III IFNs (IFN-λs) are a recently identified IFN family that share similar antiviral activities with type I IFNs. To our knowledge, we demonstrate the first functional analysis of type III IFNs from any species of bat, with the investigation of two IFN-λ genes from the pteropid bat, Pteropus alecto. Our results demonstrate that bat type III IFN has similar antiviral activity to type I and III IFNs from other mammals. In addition, the two bat type III IFNs are differentially induced relative to each other and to type I IFNs after treatment or transfection with synthetic dsRNA. Infection with the bat paramyxovirus, Tioman virus, resulted in no upregulation of type I IFN production in bat splenocytes but was capable of inducing a type III IFN response in three of the four bats tested. To our knowledge, this is the first report to describe the simultaneous suppression of type I IFN and induction of type III IFN after virus infection. These results may have important implications for the role of type III IFNs in the ability of bats to coexist with viruses.  相似文献   

8.
9.
Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells.  相似文献   

10.
11.
Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Nairovirus within the family Bunyaviridae and is the causative agent of severe hemorrhagic fever. Despite increasing knowledge about hemorrhagic fever viruses, the factors determining their pathogenicity are still poorly understood. The interferon-induced MxA protein has been shown to have an inhibitory effect on several members of the Bunyaviridae family, but the effect of MxA against CCHFV has not previously been studied. Here, we report that human MxA has antiviral activity against CCHFV. The yield of progeny virus in cells constitutively expressing MxA was reduced up to 1,000-fold compared with control cells, and accumulation of viral genomes was blocked. Confocal microscopy revealed that MxA colocalizes with the nucleocapsid protein (NP) of CCHFV in the perinuclear regions of infected cells. Furthermore, we found that MxA interacted with NP by using a coimmunoprecipitation assay. We also found that an amino acid substitution (E645R) within the C-terminal domain of MxA resulted in a loss of MxA antiviral activity and, concomitantly, in the capacity to interact with CCHFV NP. These results suggest that MxA, by interacting with a component of the nucleocapsid, prevents replication of CCHFV viral RNA and thereby inhibits the production of new infectious virus particles.  相似文献   

12.
13.
Crimean-Congo hemorrhagic fever virus (CCHFV) is an etiological agent of a disease with mortality rates in patients averaging 30%. The disease is characterized by fever, myalgia, and hemorrhage. Mechanisms underlying the hemorrhage have to our knowledge not been elucidated for CCHFV. Possibly, a direct or indirect viral effect on tight junctions (TJ) could cause the hemorrhage observed in patients, as TJ play a crucial role in vascular homeostasis and can cause leakage upon deregulation. Moreover, there is no knowledge regarding the site of entry and release of CCHFV in polarized epithelial cells. Such cells represent a barrier to virus dissemination within the host, and as a site of viral entry and release, they could play a key role in further spread. For the first time, we have shown preferential basolateral entry of CCHFV in Madin-Darby canine kidney 1 (MDCK-1) epithelial cells. Furthermore, we demonstrated basolateral release of CCHFV in polarized epithelial cells. Interestingly, by measuring transepithelial electrical resistance, we found no effect of CCHFV replication on the function of TJ in this study. Neither did we observe any difference in the localization of the TJ proteins ZO-1 and occludin in CCHFV-infected cells compared to mock-infected cells.  相似文献   

14.
Crimean-Congo hemorrhagic fever (CCHF) is a zoonosis caused by a Nairovirus of the family Bunyaviridae. Infection is transmitted to humans mostly by Hyalomma ticks and also by direct contact with the blood or tissues of infected humans or viremic livestock. Clinical features usually include a rapid progression characterized by hemorrhage, myalgia and fever, with a lethality rate up to 30%. CCHF is one of the most widely distributed viral hemorrhagic fevers and has been reported in Africa, the Middle East and Asia, as well as parts of Europe. There is no approved vaccine or specific treatment against CCHF virus (CCHFV) infections. In this context, an accurate diagnosis as well as a reliable surveillance of CCHFV infections is essential. Diagnostic techniques include virus culture, serology and molecular methods, which are now increasingly used. The European Network for the Diagnostics of "Imported" Viral Diseases organized the first international external quality assessment of CCHVF molecular diagnostics in 2011 to assess the efficiency and accurateness of CCHFV molecular methods applied by expert laboratories. A proficiency test panel of 15 samples was distributed to the participants including 10 different CCHFV preparations generated from infected cell cultures, a preparation of plasmid cloned with the nucleoprotein of CCHFV, two CCHFV RNA preparations and two negative controls. Forty-four laboratories worldwide participated in the EQA study and 53 data sets were received. Twenty data sets (38%) met all criteria with optimal performance, 10 (19%) with acceptable performance, while 23 (43%) reported results showing a need for improvement. Differences in performance depended on the method used, the type of strain tested, the concentration of the sample tested and the laboratory performing the test. These results indicate that there is still a need for improving testing conditions and standardizing protocols for the molecular detection of Crimean-Congo hemorrhagic fever virus.  相似文献   

15.
Type III interferons (IFNs), also called lambda interferons (IFN-λ), comprise three isoforms, IFN-λ1 (interleukin-29 [IL-29]), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). Only limited information is available on their expression and biological functions in humans. Type I and type II IFNs protect human pancreatic islets against coxsackievirus infection, and this is important since such viruses have been proposed to play a role in the development of human type 1 diabetes. Here we investigated whether type III IFN is expressed during infection of human islet cells with coxsackievirus and if type III IFN regulates permissiveness to such infections. We show that human islets respond to a coxsackievirus serotype B3 (CVB3) infection by inducing the expression of type III IFNs. We also demonstrate that islet endocrine cells from nondiabetic individuals express the type III IFN receptor subunits IFN-λR1 and IL-10R2. Pancreatic alpha cells express both receptor subunits, while pancreatic beta cells express only IL-10R2. Type III IFN stimulation elicited a biological response in human islets as indicated by the upregulated expression of antiviral genes as well as pattern recognition receptors. We also show that type III IFN significantly reduces CVB3 replication. Our studies reveal that type III IFNs are expressed during CVB3 infection and that the expression of the type III IFN receptor by the human pancreatic islet allows this group of IFNs to regulate the islets'' permissiveness to infection. Our novel observations suggest that type III IFNs may regulate viral replication and thereby contribute to reduced tissue damage and promote islet cell survival during coxsackievirus infection.  相似文献   

16.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a causative agent of serious hemorrhagic diseases in humans with high mortality rates. CCHFV glycoprotein Gc plays critical roles in mediating virus-host membrane fusion and has been studied extensively as an immunogen. However, the molecular mechanisms involved in membrane fusion and Gc-specific antibody-antigen interactions remain unresolved largely because structural information of this glycoprotein is missing. We designed a trimeric protein including most of the ectodomain region of Gc from the prototype CCHFV strain, IbAr10200, which enabled the cryo-electron microscopy structure to be solved at a resolution of 2.8 ?. The structure confirms that CCHFV Gc is a class II fusion protein. Unexpectedly, structural comparisons with other solved Gc trimers in the postfusion conformation revealed that CCHFV Gc adopted hybrid architectural features of the fusion loops from hantaviruses and domain III from phenuiviruses, suggesting a complex evolutionary pathway among these bunyaviruses. Antigenic sites on CCHFV Gc that protective neutralizing antibodies target were mapped onto the CCHFV Gc structure, providing valuable information that improved our understanding of potential neutralization mechanisms of various antibodies.  相似文献   

17.
18.
Type III interferons (IFNs) represent the most recently discovered group of IFNs. Together with type I IFNs (e.g. IFN-α/β), type III IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type I IFNs and type III IFNs perform largely redundant functions. However, it has become evident that type III IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type I IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type III IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.  相似文献   

19.
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a geographically widespread tick-borne arbovirus that has been recognized by the WHO as an emerging pathogen needing urgent attention to ensure preparedness for potential outbreaks. Therefore, availability of accurate diagnostic tools for identification of acute cases is necessary.A panel comprising 121 sequential serum samples collected during acute, convalescent and subsided phase of PCR-proven CCHFV infection from 16 Kosovar patients was used to assess sensitivity. Serum samples from 60 healthy Kosovar blood donors were used to assess specificity. All samples were tested with two IgM/IgG immunofluorescence assays (IFA) from BNITM, the CCHFV Mosaic 2 IgG and IgM indirect immunofluorescence tests (IIFT) from EUROIMMUN, two BlackBox ELISAs for the detection of CCHFV-specific IgM and IgG antibodies (BNITM), two Anti-CCHFV ELISAs IgM and IgG from EUROIMMUN using recombinant structural proteins of CCHFV antigens, and two ELISAs from Vector-Best (IgM: μ-capture ELISA, IgG: indirect ELISA using immobilized CCHFV antigen). Diagnostic performances were compared between methods using sensitivity, specificity, concordance and degree of agreement with particular focus on the phase of the infection.In early and convalescent phases of infection, the sensitivities for detecting specific IgG antibodies differed for the ELISA test. The BlackBox IgG ELISA yielded the highest, followed by the EUROIMMUN IgG ELISA and finally the VectorBest IgG ELISA with the lowest sensitivities. In the subsided phase, the VectorBest IgM ELISA detected a high rate of samples that were positive for anti-CCHFV IgM antibodies. Both test systems based on immunofluorescence showed an identical sensitivity for detection of anti-CCHFV IgM antibodies in acute and convalescent phases of infection.Available serological test systems detect anti-CCHFV IgM and IgG antibodies accurately, but their diagnostic performances vary with respect to the phase of the infection.  相似文献   

20.
Rift Valley fever (RVF) is an arthropod-borne viral disease repeatedly reported in many African countries and, more recently, in Saudi Arabia and Yemen. RVF virus (RVFV) primarily infects domesticated ruminants, resulting in miscarriage in pregnant females and death for newborns and young animals. It also has the ability to infect humans, causing a feverish syndrome, meningoencephalitis, or hemorrhagic fever. The various outcomes of RVFV infection in animals and humans argue for the existence of host genetic determinants controlling the disease. We investigated the susceptibility of inbred mouse strains to infection with the virulent RVFV ZH548 strain. Compared with classical BALB/cByJ mice, wild-derived Mus m. musculus MBT/Pas mice exhibited earlier and greater viremia and died sooner, a result in sharp contrast with their resistance to infection with West Nile virus and influenza A. Infection of mouse embryonic fibroblasts (MEFs) from MBT/Pas mice with RVFV also resulted in higher viral production. Microarray and quantitative RT-PCR experiments showed that BALB/cByJ MEFs displayed a significant activation of the type I IFN pathway. In contrast, MBT/Pas MEFs elicited a delayed and partial type I IFN response to RVFV infection. RNA interference-mediated inhibition of genes that were not induced by RVFV in MBT/Pas MEFs increased viral production in BALB/cByJ MEFs, thus demonstrating their functional importance in limiting viral replication. We conclude that the failure of MBT/Pas murine strain to induce, in due course, a complete innate immune response is instrumental in the selective susceptibility to RVF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号