首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
The biochemical activities of a series of transformation-competent, replication-defective large T-antigen point mutants were examined. The assays employed reflect partial reactions required for the in vitro replication of simian virus 40 (SV40) DNA. Mutants which failed to bind specifically to SV40 origin sequences bound efficiently to single-stranded DNA and exhibited nearly wild-type levels of helicase activity. A mutation at proline 522, however, markedly reduced ATPase, helicase, and origin-specific unwinding activities. This mutant bound specifically to the SV40 origin of replication, but under certain conditions it was defective in binding to both single-stranded DNA and the partial duplex helicase substrate. This suggests that additional determinants outside the amino-terminal-specific DNA-binding domain may be involved in nonspecific binding of T antigen to single-stranded DNA and demonstrates that origin-specific DNA binding can be separated from binding to single-stranded DNA. A mutant containing a lesion at residue 224 retained nearly wild-type levels of helicase activity and recognized SV40 origin sequences, yet it failed to function in an origin-specific unwinding assay. This provides evidence that origin recognition and helicase activities are not sufficient for unwinding to occur. The distribution of mutant phenotypes reflects the complex nature of the initiation reaction and the multiplicity of functions provided by large T antigen.  相似文献   

2.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

3.
Wu C  Roy R  Simmons DT 《Journal of virology》2001,75(6):2839-2847
We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.  相似文献   

4.
Mutations at multiple sites within the simian virus 40 (SV40) early region yield large T antigens which interfere trans dominantly with the replicative activities of wild-type T antigen. A series of experiments were conducted to study possible mechanisms of interference with SV40 DNA replication caused by these mutant T antigens. First, the levels of wild-type T antigen expression in cells cotransfected with wild-type and mutant SV40 DNAs were examined; approximately equal levels of wild-type T antigen were seen, regardless of whether the cotransfected mutant was trans dominant or not. Second, double mutants that contained the mutation of inA2827, a strong trans-dominant mutation with a 12-bp linker inserted at the position encoding amino acid 520, and various mutations in other parts of the large-T-antigen coding region were constructed. The trans-dominant interference of inA2827 was not affected by second mutations within the p105Rb binding site or the amino or carboxy terminus of large T antigen. Mutation of the nuclear localization signal partially reduced the trans dominance of inA2827. The large T antigen of mutant inA2815 contains an insertion of 4 amino acids at position 168 of large T; this T antigen fails to bind SV40 DNA but is not trans dominant for DNA replication. The double mutant containing the mutations of both inA2815 and in A2827 was not trans dominant. The large T antigen of dlA2433 lacks amino acids 587 to 589, was unstable, and failed to bind p53. Combining the dlA2433 mutation with the inA2827 mutation also reversed the trans dominance completely, but the effect of the dlA2433 mutation on trans dominance can be explained by the instability of this double mutant protein. In addition, we examined several mutants with conservative point mutations in the DNA binding domain and found that most of them were not trans dominant. The implications of the results of these experiments on possible mechanisms of trans dominance are discussed.  相似文献   

5.
A peptide encompassing the N-terminal 82 amino acids of simian virus 40 (SV40) large T antigen was previously shown to bind to the large subunit of DNA polymerase alpha-primase (I. Dornreiter, A. Höss, A. K. Arthur, and E. Fanning, EMBO J. 9:3329-3336, 1990). We report here that a mutant T antigen, T83-708, lacking residues 2 to 82 retained the ability to bind to DNA polymerase alpha-primase, implying that it carries a second binding site for DNA polymerase alpha-primase. The mutant protein also retained ATPase, helicase, and SV40 origin DNA-binding activity. However, its SV40 DNA replication activity in vitro was reduced compared with that of wild-type protein. The reduction in replication activity was accompanied by a lower DNA-binding affinity to SV40 origin sequences and aberrant oligomerization on viral origin DNA. Thus, the first 82 residues of SV40 T antigen are not strictly required for its interaction with DNA polymerase alpha-primase or for DNA replication function but may play a role in correct hexamer assembly and efficient DNA binding at the origin.  相似文献   

6.
J Zhu  P W Rice  L Gorsch  M Abate    C N Cole 《Journal of virology》1992,66(5):2780-2791
Mouse C3H 10T1/2 cells and the established rat embryo fibroblast cell line REF-52 are two cell lines widely used in studies of viral transformation. Studies have shown that transformation of 10T1/2 cells requires only the amino-terminal 121 amino acids of simian virus 40 (SV40) large T antigen, while transformation of REF-52 cells requires considerably more of large T antigen, extending from near the N terminus to beyond residue 600. The ability of a large set of linker insertion, small deletion, and point mutants of SV40 T antigen to transform these two cell lines and to bind p105Rb was determined. Transformation of 10T1/2 cells was greatly reduced by mutations within the first exon of the gene for large T antigen but was only modestly affected by mutations affecting the p105Rb binding site or the p53 binding region. All mutants defective for transformation of 10T1/2 cells were also defective for transformation of REF-52 cells. In addition, mutants whose T antigens had alterations in the Rb binding site showed a substantial reduction in transformation of REF-52 cells, and the degree of this reduction could be correlated with the ability of the mutant T antigens to bind p105Rb. There was a tight correlation between the ability of mutants to transform REF-52 cells and the ability of their T antigens to bind p53. These results demonstrate that multiple regions of large T antigen are required for full transformation by SV40.  相似文献   

7.
An expression vector utilizing the enhancer and promoter region of the simian virus 40 (SV40) DNA regulating a murine p53 cDNA clone was constructed. The vector produced murine p53 protein in monkey cells identified by five different monoclonal antibodies, three of which were specific for the murine form of p53. The murine p53 produced in monkey cells formed an oligomeric protein complex with the SV40 large tumor antigen. A large number of deletion mutations, in-frame linker insertion mutations, and linker insertion mutations resulting in a frameshift mutation were constructed in the cDNA coding portion of the p53 protein expression vector. The wild-type and mutant p53 cDNA vectors were expressed in monkey cells producing the SV40 large T antigen. The conformation and levels of p53 protein and its ability to form protein complexes with the SV40 T antigen were determined by using five different monoclonal antibodies with quite distinct epitope recognition sites. Insertion mutations between amino acid residues 123 and 215 (of a total of 390 amino acids) eliminated the ability of murine p53 to bind to the SV40 large T antigen. Deletion (at amino acids 11 through 33) and insertion mutations (amino acids 222 through 344) located on either side of this T-antigen-binding protein domain produced a murine p53 protein that bound to the SV40 large T antigen. The same five insertion mutations that failed to bind with the SV40 large T antigen also failed to react with a specific monoclonal antibody, PAb246. In contrast, six additional deletion and insertion mutations that produced p53 protein that did bind with T antigen were each recognized by PAb246. The proposed epitope for PAb246 has been mapped adjacent (amino acids 88 through 109) to the T-antigen-binding domain (amino acids 123 through 215) localized by the mutations mapped in this study. Finally, some insertion mutations that produced a protein that failed to bind to the SV40 T antigen appeared to have an enhanced ability to complex with a 68-kilodalton cellular protein in monkey cells.  相似文献   

8.
T antigen and template requirements for SV40 DNA replication in vitro.   总被引:70,自引:7,他引:63       下载免费PDF全文
A cell-free system for replication of SV40 DNA was used to assess the effect of mutations altering either the SV40 origin of DNA replication or the virus-encoded large tumor (T) antigen. Plasmid DNAs containing various portions of the SV40 genome that surround the origin of DNA replication support efficient DNA synthesis in vitro and in vivo. Deletion of DNA sequences adjacent to the binding sites for T antigen either reduce or prevent DNA synthesis. This analysis shows that sequences that had been previously defined by studies in vivo to constitute the minimal core origin sequences are also necessary for DNA synthesis in vitro. Five mutant T antigens containing amino acid substitutions that affect SV40 replication have been purified and their in vitro properties compared with the purified wild-type protein. One protein is completely defective in the ATPase activity of T antigen, but still binds to the origin sequences. Three altered proteins are defective in their ability to bind to origin DNA, but retain ATPase activity. Finally, one of the altered T antigens binds to origin sequences and contains ATPase activity and thus appears like wild-type for these functions. All five proteins fail to support SV40 DNA replication in vitro. Interestingly, in mixing experiments, all five proteins efficiently compete with the wild-type protein and reduce the amount of DNA replication. These data suggest that an additional function of T antigen other than origin binding or ATPase activity, is required for initiation of DNA replication.  相似文献   

9.
10.
To better define protein-DNA interactions at a eukaryotic origin, the domain of simian virus 40 (SV40) large T antigen that specifically interacts with the SV40 origin has been purified and its binding to DNA has been characterized. Evidence is presented that the affinity of the purified T antigen DNA-binding domain for the SV40 origin is comparable to that of the full-length T antigen. Furthermore, stable binding of the T antigen DNA-binding domain to the SV40 origin requires pairs of pentanucleotide recognition sites separated by approximately one turn of a DNA double helix and positioned in a head-to-head orientation. Although two pairs of pentanucleotides are present in the SV40 origin, footprinting and band shift experiments indicate that binding is limited to dimer formation on a single pair of pentanucleotides. Finally, it is demonstrated that the T antigen DNA-binding domain interacts poorly with single-stranded DNA.  相似文献   

11.
T antigen is able to transactivate gene expression from the simian virus 40 (SV40) late promoter and from several other viral and cellular promoters. Neither the mechanisms of transactivation by T antigen nor the regions of T antigen required for this activity have been determined. To address the latter point, we have measured the ability of a set of SV40 large T antigen mutants to stimulate gene expression in CV-1 monkey kidney cells from the SV40 late promoter and Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter. Transactivation, although reduced, was retained by an N-terminal 138-amino-acid fragment of T antigen. Mutants with alterations at various locations within the N-terminal 85 amino acids transactivated the RSV LTR promoter less well than did wild-type T antigen. Most of these were also partially defective in their ability to transactivate the SV40 late promoter. Two mutants with lesions in the DNA-binding domain that were unable to bind to SV40 DNA were completely defective for transactivation of both promoter, while a third mutant with a lesion in the DNA-binding domain which retained origin-binding activity transactivated both promoters as well as did wild-type T antigen. Only a low level of transactivation was seen with mutant T antigens which had lesions in or near the zinc finger region (amino acids 300 to 350). Mutations which caused defects in ATPase activity, host range/helper function, binding to p53, binding to the retinoblastoma susceptibility protein, or nuclear localization had little or no effect on transactivation. These results suggest that N-terminal portion of T antigen possesses an activation activity. The data are consistent with the idea that the overall conformation of T antigen is important for transactivation and that mutations in other regions that reduce or eliminate transactivation do so by altering the conformation or orientation of the N-terminal region so that its ability to interact with various targets is diminished or abolished.  相似文献   

12.
13.
A K Arthur  A Hss    E Fanning 《Journal of virology》1988,62(6):1999-2006
The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA.  相似文献   

14.
Khopde S  Roy R  Simmons DT 《Biochemistry》2008,47(36):9653-9660
Topoisomerase I (topo I) is required for the proper initiation of simian virus 40 (SV40) DNA replication. This enzyme binds to SV40 large T antigen at two places, close to the N-terminal end and near the C-terminal end of the helicase domain. We have recently demonstrated that the binding of topo I to the C-terminal site is necessary for the stimulation of DNA synthesis by topo I and for the formation of normal amounts of completed daughter molecules. In this study, we investigated the mechanism by which this stimulation occurs. Contrary to our expectation that the binding of topo I to this region of T antigen provides the proper unwound DNA substrate for initiation to occur, we demonstrate that binding of topo I stimulates polymerase alpha/primase (pol/prim) to synthesize larger amounts of primers consisting of short RNA and about 30 nucleotides of DNA. Topo I binding also stimulates the production of large molecular weight DNA by pol/prim. Mutant T antigens that fail to bind topo I normally do not participate in the synthesis of expected amounts of primers or large molecular weight DNAs indicating that the association of topo I with the C-terminal binding site on T antigen is required for these activities. It is also shown that topo I has the ability to bind to human RPA directly, suggesting that the stimulation of pol/prim activity may be mediated in part through RPA in the DNA synthesis initiation complex.  相似文献   

15.
Regulation of SV40 DNA replication by phosphorylation of T antigen.   总被引:46,自引:5,他引:41       下载免费PDF全文
The role of phosphorylation in regulating the biochemical properties of SV40 large T antigen has been examined. Treatment of purified T antigen with calf intestinal alkaline phosphatase resulted in the removal of 80% of the 32P label. This partially dephosphorylated T antigen displayed an increase in its ability to support DNA replication in vitro. This increase in replication activity was paralleled by an activation of specific DNA binding to site II, a necessary element within the origin of SV40 DNA replication. In contrast, the ATPase activity of dephosphorylated T antigen remained unchanged. These results demonstrate that DNA replication is regulated by phosphorylation of an origin specific DNA binding protein.  相似文献   

16.
17.
The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional domains.  相似文献   

18.
Three simian virus 40 (SV40)-transformed monkey cell lines, C2, C6, and C11, producing T-antigen variants that are unable to initiate viral DNA replication, were analyzed with respect to their affinity for regulatory sequences at the viral origin of replication. C2 and C11 T antigens both bound specifically to sequences at sites 1 and 2 at the viral origin region, whereas C6 T antigen showed no specific affinity for any viral DNA sequences under all conditions tested. Viral DNA sequences encoding the C6 T antigen have recently been cloned out of C6 cells and used to transform an established rat cell line. T antigen from several cloned C6-SV40-transformed rat lines failed to bind specifically to the origin. C6 DNA contains three mutations: two located close to the amino terminus of T antigen at amino acid positions 30 and 51 and a third located internally at amino acid position 153. Two recombinant SV40 DNA mutants were prepared containing either the amino-terminal mutations at positions 30 and 51 (C6-1) or the internally located mutation at position 153 (C6-2) and used to transform Rat 2 cells. Whereas T antigen from C6-2-transformed cells lacked any specific affinity for these sequences. Therefore, the single mutation at amino acid position 153 (Asn leads to Thr) is sufficient to abolish the origin-binding property of T antigen. A T antigen-specific monoclonal antibody, PAb 100, which had been previously shown to immunoprecipitate an immunologically distinct origin-binding subclass of T antigen, recognized wild-type or C6-1 antigens, but failed to react with C6 or C6-2 T antigens. These results indicate that viral replication function comprises properties of T antigen that exist in addition to its ability to bind specifically to the SV40 regulatory sequences. Furthermore, it is concluded from these data that specific viral origin binding is not a necessary feature of the transforming function of T antigen.  相似文献   

19.
D McVey  B Woelker    P Tegtmeyer 《Journal of virology》1996,70(6):3887-3893
Previous studies have shown that phosphorylation of simian virus 40 (SV40) T antigen at threonine 124 enhances the binding of T antigen to the SV40 core origin of replication and the unwinding of the core origin DNA via hexamer-hexamer interactions. Here, we report that threonine 124 phosphorylation enhances the interaction of T-antigen amino acids 1 to 259 and 89 to 259 with the core origin of replication. Phosphorylation, therefore, activates the minimal DNA binding domain of T antigen even in the absence of domains required for hexamer formation. Activation is mediated by only one of three DNA binding elements in the minimal DNA binding domain of T antigen. This element, including amino acids 167, 215, and 219, enhances binding to the unique arrangement of four pentanucleotides in the core origin but not to other pentanucleotide arrangements found in ancillary regions of the SV40 origin of replication. Interestingly, the same four pentanucleotides in the core origin are necessary and sufficient for phosphorylation-enhanced DNA binding. Further, we show that phosphorylation of threonine 124 promotes the assembly of high-order complexes of the minimal DNA binding domain of T antigen with core origin DNA. We propose that phosphorylation induces conformational shifts in the minimal DNA binding domain of T antigen and thereby enhances interactions among T-antigen subunits oriented by core origin pentanucleotides. Similar subunit interactions would enhance both assembly of full-length T antigen into binary hexamer complexes and origin unwinding.  相似文献   

20.
S Chen  E Paucha 《Journal of virology》1990,64(7):3350-3357
A series of replication-competent simian virus 40 (SV40) large T antigens with point and deletion mutations in the amino acid sequence between residues 105 and 115 were examined for the ability to immortalize primary cultures of mouse and rat cells. The results show that certain mutants, including one that deletes the entire region, are able to immortalize. However, consistent with previous data, the immortalized cells are not fully transformed, as judged by doubling time, sensitivity to concentrations of serum, and anchorage-independent growth. The region from 106 to 114 has structural features in common with a region involved in transformation by adenovirus E1a protein (J. Figge, T. Webster, T.F. Smith, and E. Paucha, J. Virol. 62:1814-1818, 1988) and influences the binding of the retinoblastoma gene product to large T (J.A. DeCaprio, J.W. Ludlow, J. Figge, J.-Y. Shew, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and D.M. Livingston, Cell 54:275-283, 1988). Together, these results imply that the sequence from 106 to 114 forms part of a domain that is essential for transformation of established cells, is dispensable for immortalization, and is not required for SV40 replication. The results also indicate that the ability of SV40 large T to immortalize primary cells is independent of its ability to bind to the retinoblastoma gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号