首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Patellofemoral pain (PFP) is a common condition that occurs more frequently in females. Anatomical, hormonal and neuromuscular factors have been proposed to contribute to the increased incidence of PFP in females, with neuromuscular factors considered to be of particular importance. This cross-sectional study aimed to evaluate differences in the neuromotor control of the knee and hip muscles between genders and to investigate whether clinical measures of hip rotation range and strength were associated with EMG measures of hip and thigh motor control. Twenty-nine (16 female and 13 male) asymptomatic participants completed a visual choice reaction-time stair stepping task. EMG activity was recorded from vastus medialis oblique, vastus lateralis, anterior and posterior gluteus medius muscles. In addition hip rotation range of motion and hip external rotation, abduction and trunk strength were assessed. There were no differences in the timing or peak of EMG activation of the vasti or gluteus medius muscle between genders during the stepping task. There were however significant associations between EMG measures of motor control of the vasti and hip strength in both females and males. These findings are suggestive of a link between hip muscle control and vasti neuromotor control.  相似文献   

2.
Foot placement is critical to balance control during walking and is primarily controlled by muscle force generation. Although gluteus medius activity has been associated with mediolateral foot placement, how other muscles contribute to foot placement is not clear. Furthermore, although dynamic walking models have suggested that anteroposterior foot placement can be passively controlled, the extent to which muscles actively contribute to anteroposterior foot placement has not been determined. The objective of this study was to identify individual muscle contributions to mediolateral and anteroposterior foot placement during walking in healthy adults. Dynamic simulations of walking were developed for six older adults and a segmental power analysis was performed to determine the individual muscle contributions to the mediolateral and anteroposterior power delivered to the foot segment. The simulations revealed the ipsilateral swing limb gluteus medius, iliopsoas, rectus femoris and hamstrings and the contralateral stance limb gluteus medius and ankle plantarflexors were primary contributors to both mediolateral and anteroposterior foot placement. Muscle contributions to foot placement were found to be highly influenced by their contributions to pelvis power, which was dominated by those muscles crossing the hip joint. Thus, impaired balance control may be improved by focusing rehabilitation interventions on optimizing the coordination of those muscles crossing the hip joint and the ankle plantarflexors.  相似文献   

3.
The aim of this study was to describe and explain how individual muscles control mediolateral balance during normal walking. Biomechanical modeling and experimental gait data were used to quantify individual muscle contributions to the mediolateral acceleration of the center of mass during the stance phase. We tested the hypothesis that the hip, knee, and ankle extensors, which act primarily in the sagittal plane and contribute significantly to vertical support and forward progression, also accelerate the center of mass in the mediolateral direction. Kinematic, force plate, and muscle EMG data were recorded simultaneously for five healthy subjects who walked at their preferred speeds. The body was modeled as a 10-segment, 23 degree-of-freedom skeleton, actuated by 54 muscles. Joint moments obtained from inverse dynamics were decomposed into muscle forces by solving an optimization problem that minimized the sum of the squares of the muscle activations. Muscles contributed significantly to the mediolateral acceleration of the center of mass throughout stance. Muscles that generated both support and forward progression (vasti, soleus, and gastrocnemius) also accelerated the center of mass laterally, in concert with the hip adductors and the plantarflexor everters. Gravity accelerated the center of mass laterally for most of the stance phase. The hip abductors, anterior and posterior gluteus medius, and, to a much lesser extent, the plantarflexor inverters, actively controlled balance by accelerating the center of mass medially.  相似文献   

4.
To investigate lower-limb muscle function during sidestep cutting, prior studies have analysed electromyography (EMG) data together with three dimensional motion analysis. Such an approach does not directly quantify the biomechanical role of individual lower-limb muscles during a sidestep cut. This study recorded three dimensional motion analysis, ground reaction force (GRF) and EMG data for eight healthy males executing an unanticipated sidestep cut. Using a musculoskeletal modelling approach, muscle function was determined by computing the muscle contributions to the GRFs and lower-limb joint moments. We found that bodyweight support (vertical GRF) was primarily provided by the vasti, gluteus maximus, soleus and gastrocnemius. These same muscles, along with the hamstrings, were also primarily responsible for modulating braking and propulsion (anteroposterior GRF). The vasti, gluteus maximus and gluteus medius were the key muscles for accelerating the centre-of-mass towards the desired cutting direction by generating a medially-directed GRF. Our findings have implications for designing retraining programs to improve sidestep cutting technique.  相似文献   

5.
The purpose of this study was to characterize the contributions of individual muscles to forward progression and vertical support during walking. We systematically perturbed the forces in 54 muscles during a three-dimensional simulation of walking, and computed the changes in fore-aft and vertical accelerations of the body mass center due to the altered muscle forces during the stance phase. Our results indicate that muscles that provided most of the vertical acceleration (i.e., support) also decreased the forward speed of the mass center during the first half of stance (vasti and gluteus maximus). Similarly, muscles that supported the body also propelled it forward during the second half of stance (soleus and gastrocnemius). The gluteus medius was important for generating both forward progression and support, especially during single-limb stance. These findings suggest that a relatively small group of muscles provides most of the forward progression and support needed for normal walking. The results also suggest that walking dynamics are influenced by non-sagittal muscles, such as the gluteus medius, even though walking is primarily a sagittal-plane task.  相似文献   

6.
Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.  相似文献   

7.
The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.  相似文献   

8.
Optimal muscular coordination strategies for jumping   总被引:5,自引:0,他引:5  
This paper presents a detailed analysis of an optimal control solution to a maximum height squat jump, based upon how muscles accelerate and contribute power to the body segments during the ground contact phase of jumping. Quantitative comparisons of model and experimental results expose a proximal-to-distal sequence of muscle activation (i.e. from hip to knee to ankle). We found that the contribution of muscles dominates both the angular acceleration and the instantaneous power of the segments. However, the contributions of gravity and segmental motion are insignificant, except the latter become important during the final 10% of the jump. Vasti and gluteus maximus muscles are the major energy producers of the lower extremity. These muscles are the prime movers of the lower extremity because they dominate the angular acceleration of the hip toward extension and the instantaneous power of the trunk. In contrast, the ankle plantarflexors (soleus, gastrocnemius, and the other plantarflexors) dominate the total energy of the thigh, though these muscles also contribute appreciably to trunk power during the final 20% of the jump. Therefore, the contribution of these muscles to overall jumping performance cannot be neglected. We found that the biarticular gastrocnemius increases jump height (i.e. the net vertical displacement of the center of mass of the body from standing) by as much as 25%. However, this increase is not due to any unique biarticular action (e.g. proximal-to-distal power transfer from the knee to the ankle), since jumping performance is similar when gastrocnemius is replaced with a uniarticular ankle plantarflexor.  相似文献   

9.
This study aimed to clarify the differences in electromyographic activity between the quadratus lumborum anterior (QL-a) and posterior layers (QL-p), and the relationship among trunk muscles and gluteus medius (GMed) activities during forward landing. Thirteen healthy men performed double-leg and single-leg (ipsilateral or contralateral sides as the electromyography measurement of trunk muscles) forward landings from a 30 cm-height-box. The onset of electromyographic activity in pre-landing and the electromyographic amplitude of the unilateral QL-a, QL-p, abdominal muscles, lumbar multifidus (LMF), erector spinae (LES), and bilateral GMed were recorded. Two-way ANOVA was used to compare the onset of electromyographic activity (3 landing leg conditions × 10 muscles) and electromyographic amplitude among (3 landing leg conditions × 2 phases). The onset of QL-p was significantly earlier in contralateral-leg landing than in the double-leg and ipsilateral-leg landings. The onset of LMF and LES was significantly earlier than that of the abdominal muscles in contralateral-leg landing. QL-p activity and GMed activity on the contralateral leg side in the pre-landing were significantly higher in contralateral-leg landing than in the other leg landings. To prepare for pelvic and trunk movements after ground contact, LMF, LES, QL-p on non-support leg side, and GMed on support leg side showed early or high feedforward activation before ground contact during single-leg forward landing.  相似文献   

10.
Muscles actuate walking by providing vertical support and forward progression of the mass center. To quantify muscle contributions to vertical support and forward progression (i.e., vertical and fore-aft accelerations of the mass center) over a range of walking speeds, three-dimensional muscle-actuated simulations of gait were generated and analyzed for eight subjects walking overground at very slow, slow, free, and fast speeds. We found that gluteus maximus, gluteus medius, vasti, hamstrings, gastrocnemius, and soleus were the primary contributors to support and progression at all speeds. With the exception of gluteus medius, contributions from these muscles generally increased with walking speed. During very slow and slow walking speeds, vertical support in early stance was primarily provided by a straighter limb, such that skeletal alignment, rather than muscles, provided resistance to gravity. When walking speed increased from slow to free, contributions to support from vasti and soleus increased dramatically. Greater stance-phase knee flexion during free and fast walking speeds caused increased vasti force, which provided support but also slowed progression, while contralateral soleus simultaneously provided increased propulsion. This study provides reference data for muscle contributions to support and progression over a wide range of walking speeds and highlights the importance of walking speed when evaluating muscle function.  相似文献   

11.
The human hip joint withstands high contact forces during daily activity and is therefore susceptible to injury and structural deterioration over time. Knowledge of muscle-force contributions to hip joint loading may assist in the development of strategies to prevent and manage conditions such as osteoarthritis, femoro-acetabular impingement and fracture. The main aim of this study was to determine the contributions of individual muscles to hip contact force in normal walking. Muscle contributions to hip contact force were calculated based on a previously published dynamic optimization solution for normal walking, which provided the time histories of joint motion, ground reaction forces, and muscle forces during the stance and swing phases of gait. The force developed by each muscle plus its contribution to the ground reaction force were used to determine the muscle’s contribution to hip contact force. Muscles were the major contributors to hip contact force, with gravitational and centrifugal forces combined contributing less than 5% of the total contact force. Four muscles that span the hip – gluteus medius, gluteus maximus, iliopsoas, and hamstrings – contributed most significantly to the three components of the hip contact force and hip contact impulse (integral of hip contact force over time). Three muscles that do not span the hip – vasti, soleus, and gastrocnemius – also contributed substantially to hip joint loading. These results provide additional insight into lower-limb muscle function during walking and may also be relevant to studies of cartilage degeneration and bone remodelling at the hip.  相似文献   

12.
Prone hip extension has been used as a self-perturbation task to test the stability of the lumbopelvic region. However, the relationship between recruitment patterns in the hip and trunk muscles and lumbopelvic kinematics remains unknown. The present study aimed to examine if the balance of hip and trunk muscle activities are related to pelvic motion and low back muscle activity during prone hip extension. Sixteen healthy participants performed prone hip extension from 30° of hip flexion to 10° of hip extension. Surface electromyography (of the gluteus maximus, semitendinosus, rectus femoris, tensor fasciae latae, multifidus, and erector spinae) and pelvic kinematic measurements were collected. Results showed that increased activity of the hip flexor (tensor fasciae latae) relative to that of hip extensors (gluteus maximus and semitendinosus) was significantly associated with increased anterior pelvic tilt during hip extension (r=0.52). Increased anterior pelvic tilt was also significantly related to the delayed onset timing of the contralateral and ipsilateral multifidus (r=0.57, r=0.53) and contralateral erector spinae (r=0.63). Additionally, the decrease of the gluteus maximus activity relative to the semitendinosus was significantly related to increased muscle activity of the ipsilateral erector spinae (r=-0.57). These results indicate that imbalance between the agonist and antagonist hip muscles and delayed trunk muscle onset would increase motion in the lumbopelvic region.  相似文献   

13.
Excessive flexion and internal rotation of the hip is a common gait abnormality among individuals with cerebral palsy. The purpose of this study was to examine the influence of hip flexion on the rotational moment arms of the hip muscles. We hypothesized that flexion of the hip would increase internal rotation moment arms and decrease external rotation moment arms of the primary hip rotators. To test this hypothesis we measured rotational moment arms of the gluteus maximus (six compartments), gluteus medius (four compartments), gluteus minimus (three compartments) iliopsoas, piriformis, quadratus femoris, obturator internus, and obturator externus. Moment arms were measured at hip flexion angles of 0, 20, 45, 60, and 90 degrees in four cadavers. A three-dimensional computer model of the hip muscles was developed and compared to the experimental measurements. The experimental results and the computer model showed that the internal rotation moment arms of some muscles increase with flexion; the external rotation moment arms of other muscles decrease, and some muscles switch from external rotation to internal rotation as the hip is flexed. This trend toward internal rotation with hip flexion was apparent in 15 of the 18 muscle compartments we examined, suggesting that excessive hip flexion may exacerbate internal rotation of the hip. The gluteus maximus was found to have a large capacity for external rotation. Enhancing the activation of the gluteus maximus, a muscle that is frequently underactive in persons with cerebral palsy, may help correct excessive flexion and internal rotation of the hip.  相似文献   

14.
It has been suggested that the uniquely large gluteus maximus (GMAX) muscles were an important adaptation during hominin evolution based on numerous anatomical differences between humans and extant apes. GMAX electromyographic (EMG) signals have been quantified for numerous individual movements, but not across the range of locomotor gaits and speeds for the same subjects. Thus, comparing relative EMG amplitudes between these activities has not been possible. We assessed the EMG activity of the gluteal muscles during walking, running, sprinting, and climbing. To gain further insight into the function of the gluteal muscles during locomotion, we measured muscle activity during walking and running with external devices that increased or decreased the need to control either forward or backward trunk pitch. We hypothesized that 1) GMAX EMG activity would be greatest during sprinting and climbing and 2) GMAX EMG activity would be modulated in response to altered forward trunk pitch demands during running. We found that GMAX activity in running was greater than walking and similar to climbing. However, the activity during sprinting was much greater than during running. Further, only the inferior portion of the GMAX had a significant change with altered trunk pitch demands, suggesting that the hip extensors have a limited contribution to the control of trunk pitch movements during running. Overall, our data suggest that the large size of the GMAX reflects its multifaceted role during rapid and powerful movements rather than as a specific adaptation for a single submaximal task such as endurance running. Am J Phys Anthropol 153:124–131, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Gluteus maximus muscle function and the origin of hominid bipedality   总被引:1,自引:0,他引:1  
Bipedality not only frees the hands for tool use but also enhances tool use by allowing use of the trunk for leverage in applying force and thus imparting greater final velocity to tools. Since the weight and acceleration of the trunk and forelimbs on the hindlimbs must be counteracted by muscles such as m. gluteus maximus that control pelvic and trunk movements, it is suggested that the large size of the cranial portion of the human gluteus maximus muscle and its unique attachment to the dorsal ilium (which is apparent in the Makapan australopithecine ilium) may have contributed to the effectiveness with which trunk movement was exploited in early hominid foraging activities. To test this hypothesis, the cranial portions of both right and left muscles were investigated in six human subjects with electromyography during throwing, clubbing, digging, and lifting. The muscles were found to be significantly recruited when the trunk is used in throwing and clubbing, initiating rotation of the pelvis and braking it as trunk rotation ceases and the forelimb accelerates. They stabilize the pelvis during digging and exhibit marked and prolonged activity when the trunk is maintained in partial flexion during lifting of heavy objects.  相似文献   

16.
Long sit-to-stand (STS) time has been identified as a feature of impaired functional mobility. The changes in biomechanics of STS performance with simultaneous hip adductor contraction have not been studied, which may limit indications for use of hip adductor activation during STS training.Ten individuals with hemiplegia (mean age 61.8 years, injury time 29.8 ± 15.2 months) performed the STS with and without squeezing a ball between two legs. The joint moments, ground reaction force (GRF), chair reaction force and movement durations and temporal index of electromyography were calculated from the control condition for comparison with those from the ball squeezing condition.Under the squeeze condition, reduced peak vertical GRF during the ascension phase with increased loading rate was observed in the nonparetic limb, and the peak knee extensor moment occurred earlier in the paretic. Earlier activation of tibialis anterior and gluteus maximus, and gluteus medius were found in squeeze STS.Squeezing a ball between limbs during STS increased the contraction timing of tibialis anterior, gluteus maximus, gluteus medius, and soleus as well as a more symmetric rising mechanics encourage the use of squeezing a ball between limbs during STS for individuals with hemiparesis.  相似文献   

17.
In 1986 and 1987, a hominid left ilium fragment consisting of a spina iliaca anterior superior and crista iliaca was discovered during excavations at Sterkfontein, South Africa. Although the specimen is small it gives valuable hints for muscle insertions and origins at the pelvis of Australopithecus africanus. It indicates that the anatomy of the abdominal muscles and of the mm. glutei medius et minimus of A. africanus was quite different from that of the great apes and more similar to that of modern humans. This has major implications for the interpretation of the bipedalism and locomotor efficiency of the early South African hominids.  相似文献   

18.
The present research was undertaken to determine the effects of sexual dimorphism in the human pelvis and femur on the mechanics of human locomotion. The analysis was based on six biomechanical variables determined from 25 male and 32 female skeletal remains from the Dickson Mound site. Discriminant function analysis indicates that the mechanical variables which primarily contribute to dimorphism are the moment arm of the gluteus medius and the torque produced by the abductors at the hip. These mechanical aspects of hip function produce greater pressure on the femoral head in females.  相似文献   

19.
Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.  相似文献   

20.
This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the trunk induced by individual muscles, in the sagittal and frontal planes, were calculated using 3D muscle-driven simulations of seven young healthy subjects walking at free speed. Analysis of the simulations demonstrated that the abdominal and back muscles displayed large contributions throughout the gait cycle both in the sagittal and frontal planes. Proximal lower-limb muscles contributed more than distal muscles in the sagittal plane, while both proximal and distal muscles showed large contributions in the frontal plane. Along with the stance-limb muscles, the swing-limb muscles also exhibited considerable contribution. The gluteus medius was found to be an important individual frontal-plane control muscle; enhancing its function in pathologies could ameliorate gait by attenuating trunk sway. In addition, since gravity appreciably accelerated the trunk in the frontal plane, it may engender excessive trunk sway in pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号