首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.Lactic acid bacteria are traditionally used to produce or to preserve various food products such as fermented milks, meats, and vegetables. Their ability to initiate rapid acidification of the raw material is essential to improve the flavor, texture, and safety of these products (11, 14). In order to prevent poor fermentation yields and to improve the quality and reliability of the products, it is important to maintain proper control starter production. This control may be achieved by studying the effects of process parameters on the growth kinetics of the bacteria and on their acidification activity and physiological state in growing conditions. Among all process parameters, pH and harvesting time are key factors that strongly influence the physiological state of lactic acid bacteria after fermentation and stabilization.Lactic acid starters are currently produced using pH-controlled pure cultures (6), during which pH is generally regulated at an optimal value by continuously adding sodium hydroxide or ammonia in the bioreactor (23). Various growth characteristics such as maximal biomass concentration, specific growth rate, fermentation time, sugar consumption or growth, and product yields are significantly influenced by the pH control value (1, 4). Optimal pH ranges were therefore determined for several lactic acid bacteria, such as Streptococcus thermophilus (pH 6.5), Lactobacillus bulgaricus (pH 5.8 to 6) (5, 22), or Lactococcus lactis subsp. cremoris (pH 6.3 to 6.9) (8).Compared to acidic fermentations, pH-controlled cultures led to higher growth yields and productivity (9, 23) as a result of the lower level of nondissociated lactic acid in the culture medium (2, 12, 15). The acidification of the cytoplasm induced by the nondissociated form of the weak organic acid leads to the collapse of the proton motive force (13). This phenomenon inhibits nutrient transport and enzymatic reactions and leads to DNA alteration and biomass inactivation (12). Maintaining the extracellular pH (pHext) at a high value helps the cells stabilize their intracellular pH at a sufficiently high value (9), thus decreasing the inhibiting effect of lactic acid.Fermentation pH also acts on energetic parameters, such as internal pH (pHi), pH gradient (dpH), proton motive force, membrane potential, NADH/NAD ratio, ATP level and rate of ATP formation, and lactate dehydrogenase and ATPase activity (1, 9, 17). During batch cultures of L. lactis performed with or without pH control, Cachon et al. (9) showed that pH control has a significant influence on the variations of pHi, dpH, and NADH/NAD ratio, thus acting on growth parameters. Moreover, in batch cultures, pHi is dependent upon both the external pH and the age of culture. Mercade et al. (17) showed that cultures of L. bulgaricus at controlled pH 6.4 are inhibited at the level of anabolism but were not energy limited. They are characterized by a high maintenance coefficient in contrast to cultures without pH control which consume intracellular energy for pHi regulation.The effect of pH on cellular physiology is confirmed by other studies which show that it influences acidification activity of lactic acid bacteria (23-25). Whereas Wang et al. (25) indicated that Lactobacillus acidophilus cells grown at optimal pH display a higher residual acidification activity than cells grown at lower pH control values, Schepers et al. (24) and Savoie et al. (23) demonstrated that this activity is higher when starters are produced without pH control or at low pH control values. These authors explained that conditions generating high biomass concentrations do not systematically lead to cells with an efficient acidification activity.From this information, the effect of pH control was elucidated on growth and energetic parameters, whereas its effect on the dynamic of cellular physiology, viability, and acidification activity during growth is still not determined.A few authors demonstrated that the harvesting time has a strong impact on cellular parameters such as viability and acidification activity (3, 20, 24). Béal et al. (6) specified that there is an optimal range of time during which to harvest cells in a good physiological state, i.e., at a high cellular concentration and a high acidification activity. However, since this optimal range is strongly strain and condition dependent, more information is needed about the influence of harvesting time on physiological parameters.In order to improve knowledge about the effects of fermentation pH and harvesting time on starter''s quality, we sought here to apply some rapid and relevant methods to characterize the dynamic of L. delbrueckii subsp. bulgaricus CFL1 physiological state throughout pH 6 and pH 5 fermentations. This might allow industrial starter producers to better control their fermentations and to achieve high-quality starters. Among the available methods, the Cinac system and multiparametric flow cytometry, associated with plate counts, made it possible to determine and compare different physiological parameters such as cultivability, acidification activity (Cinac system), membrane damage, enzymatic activity, cell depolarization, intracellular pH, and pH gradient (flow cytometry) (20). Two dynamic schemes of the time course of the physiological state during pH 6 or pH 5 cultures are proposed and discussed.  相似文献   

2.
TMSG-1 was a tumor metastasis-related gene identified using mRNA differential display, whose expression level was lower in cancer cell lines with higher metastatic potential and in tumor tissue with metastasis. TMSG-1 was transfected to prostate cancer cell line (PC-3M-1E8) with high metastatic potential to observe the effects of increased expression of TMSG-1 on V-ATPase activity, intracellular pH and cell apoptosis. Subcellular localization of the encoded protein of TMSG-1 was determined by using GFP. Results showed that there were no differences of V-ATPase activity among parental PC-3M-1E8 cell line, pcDNA3 transfectant and anti-TMSG-1 transfectant, whereas the V-ATPase activity was significantly higher in TMSG-1 transfectant than that in parental PC-3M-1E8 cell line, pcDNA3 transfectant and Anti-TMSG-1 transfectant (p<0.001). Intracellular pH (pHi) was detected by using the pH-dependent fluorescence probe BECEF. Results showed the pHi was significantly increased in TMSG-1 transfectant. Cell apoptosis assay demonstrated cell apoptosis was significantly higher in -1 transfectant (p<0.01) and BCL2 expression was down regulated. Subcellular localization of TMSG-1 protein showed TMSG-1 was a transmembrane protein, which predicted TMSG-1 protein was located in cytoplasm system, such as endoplasmic reticulum and mitochondrial. These results indicated TMSG-1 up regulation in prostate cancer cell line could promote V-ATPase activity, increase pHi and cell apoptosis, and inhibit the expression of BCL2.  相似文献   

3.
Wen B  Cai C  Wang R  Song S  Song J 《Protoplasma》2012,249(2):323-335
Cytological and physiological changes during cryopreservation were investigated in Livistona chinensis embryos excised 42 weeks after flowering. Both dehydration and freezing caused numerous cellular ultrastructural alterations. Dehydration seriously impaired plasma membrane integrity, while freezing caused a further increase in electrolyte leakage. Damage to cellular ultrastructure and plasmalemma integrity had an inverse relationship with water content in unfrozen embryos and a positive relationship in frozen embryos. Changes in activity of antioxidant enzymes differed during cryopreservation. Dehydration and freezing had little effect on superoxide dismutase activity, although these treatments greatly reduced embryo viability. Activity of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) changed only slightly during dehydration, but dehydration markedly decreased activity of ascorbate peroxidase (APX) and catalase (CAT). Freezing further decreased APX and GR activity but increased CAT activity in dehydrated samples. A novel DHAR isozyme was induced during the freeze–thaw cycle. Membrane lipid peroxidation was detected in the control embryos, and was promoted by both dehydration and freezing. The malondialdehyde (MDA) content in post-thaw embryos increased by a maximum of 30%. Thus, changes in viability of embryos were closely related to damage to cellular ultrastructure and plasmalemma integrity, but were not directly related to antioxidant activity nor MDA accumulation.  相似文献   

4.
Laccase activity inTrichoderma harzianum and in our own isolateTrichoderma atroviride was correlated with the production of the green pigment in conidial spores. The laccases of the two fungal species exhibit comparable kinetic parameters, pH optima and thermal sensitivity but differed in physiological properties, such as their catalytic activity during growth.  相似文献   

5.
During the industrial stabilization process, lactic acid bacteria are subjected to several stressful conditions. Tolerance to dehydration differs among lactic acid bacteria and the determining factors remain largely unknown. Lactobacillus coryniformis Si3 prevents spoilage by mold due to production of acids and specific antifungal compounds. This strain could be added as a biopreservative in feed systems, e.g. silage. We studied the survival of Lb. coryniformis Si3 after freeze-drying in a 10% skim milk and 5% sucrose formulation following different fermentation pH values and temperatures. Initially, a response surface methodology was employed to optimize final cell density and growth rate. At optimal pH and temperature (pH 5.5 and 34 °C), the freeze-drying survival of Lb. coryniformis Si3 was 67% (±6%). The influence of temperature or pH stress in late logarithmic phase was dependent upon the nature of the stress applied. Heat stress (42 °C) did not influence freeze-drying survival, whereas mild cold- (26 °C), base- (pH 6.5), and acid- (pH 4.5) stress significantly reduced survival. Freeze-drying survival rates varied fourfold, with the lowest survival following mild cold stress (26 °C) prior to freeze-drying and the highest survival after optimal growth or after mild heat (42 °C) stress. Levels of different membrane fatty acids were analyzed to determine the adaptive response in this strain. Fatty acids changed with altered fermentation conditions and the degree of membrane lipid saturation decreased when the cells were subjected to stress. This study shows the importance of selecting appropriate fermentation conditions to maximize freeze-drying viability of Lb. coryniformis as well as the effects of various unfavorable conditions during growth on freeze-drying survival.  相似文献   

6.
The morphological effects of CF66I, an antifungal compound produced by Burkholderia cepacia, on growing hyphae of Fusarium oxysporum were studied by fluorescence microscopy (FM) and transmission electron microscopy (TEM). At 20 μg/ml, CF66I strongly inhibited growth and induced significant changes of the hyphal morphology. These changes included swelling of hyphae with considerable thickening cell wall and abnormal chitin deposition, which was indicative of the alterations in cell wall structure. Furthermore, fluorescein diacetate (FDA) staining indicated the loss of intracellular esterase activity. CF66I probably inhibits fungal growth by interfering with the cell metabolic pathways. At 120 μg/ml, CF66I killed F. oxysporum (accompanied by propidium iodide permeation, intracellular cytoplasm leakage and crushing of hyphal tips), probably by direct damage to the cell membrane. Thus, there are two different antifungal mechanisms of CF66I, depending on its concentration, and further studies on this compound might be useful for us to develop a new class of antifungal agents.  相似文献   

7.

Background  

Inositol is a key cellular metabolite for many organisms. Cryptococcus neoformans is an opportunistic pathogen which primarily infects the central nervous system, a region of high inositol concentration, of immunocompromised individuals. Through the use of myo-inositol oxygenase C. neoformans can catabolize inositol as a sole carbon source to support growth and viability.  相似文献   

8.
The physiological status and metabolic heterogeneity of Bacillus cereus cells within a culture during an 8-h batch fermentation process was measured using flow cytometry (FCM). Concurrently, production of the toxin, PC-PLC, and the extent of cell adhesion of live and dead cells were monitored using novel fluorescent assays. Flow cytometry analysis detected growth phase-related changes in the physiological profiles of cells over the course of the fermentation, with variation in the percentage of cells displaying membrane damage and intracellular esterase and redox activities. As the exponential phase proceeded, populations became more uniform in terms of protein content as measured using FCM in tandem with a cell tracking dye, with the majority of cells becoming membrane intact, esterase positive and redox active. PC-PLC activity appeared strongly related to cell density. Permeabilisation of cells was accompanied by a loss in adherent properties, while 25–100% of cells with intracellular esterase activity possessed adhesion properties. Cells in late exponential phase appeared to have reduced adherence properties compared to cells in early exponential or lag phase. As well as demonstrating the utility of FCM for measuring heterogeneity in terms of cell physiological status throughout the course of batch cultures, the methods utilised in this study could be used to relate processes such as toxin production or cell adhesion to cell physiological state.  相似文献   

9.
Adenosine 5′-diphosphoribose (ADP-ribose) has been identified as a significant contributor to the anti-cytotoxic activity of Lactobacillus bulgaricus extracts. Although the biological activities associated with the administration of probiotic bacteria and components thereof are sometimes attributed to the peptidoglycans that comprise a substantial portion of the Gram-positive bacterial cell wall, we found that the beta-nicotine adenine dinucleotide (NAD) hydrolysis product ADP-ribose was a significant contributor to the observed anti-cytotoxicity in our L. bulgaricus extracts. The ADP-ribose was isolated, identified, and quantitated by high performance liquid chromatography (HPLC) and by nuclear magnetic resonance (NMR) spectroscopy. ADP-ribose levels as low as 5 mg/L exhibited a measurable inhibition of tumor necrosis factor alpha (TNF-α) mediated cytotoxicity in an in vitro cell assay, whereas the ADP-ribose content of the L. bulgaricus extracts often exceeded 5 mg/g dry weight.  相似文献   

10.
With the growing interest in using surfactants to improve microbial cell performance for whole-cell biocatalysis and bioremediation, understanding the interactions between surfactants and bacteria is of great importance. By using cyanine fluorescent protein (CFP) and bacterial luciferase (LUX) as dual bioreporters, the effects of n-dodecyltrimethylammonium bromide (DTAB) on the whole cells and intracellular proteins in Pseudomonas putida cultures were quantitatively and systematically studied. The dual reporter system was shown to be a useful indicator to assess the effect of DTAB treatment on whole-cell metabolic activity, membrane permeability, and cellular enzyme activity. CFP was useful to assess the leakage of intracellular enzymes and the lysis of cells and was able to reflect the activities of most cellular enzymes, while LUX reflected the permeability of cell membranes and cellular metabolic activity. The validity of CFP–LUX dual bioreporters was further confirmed by detecting changes in extracellular proteins, membrane potential, oxygen consumption rate (OUR), and intracellular catechol 2,3-dioxygenase (C23O) activity with the addition of DTAB. The dual LUX–CFP bioreporter is a useful tool for analyzing the surfactant–bacterium interactions for biotechnological applications.  相似文献   

11.
Sodium fluoride showed pH-dependent physiological responses in the two test microalgae Anabaena khannae and Chlorococcum humicola. A. khannae showed severe membrane damage with fluoride at low pH with leakage of pigments and electrolytes. Annihilation of photosynthesis along with inhibition in 14C uptake was observed at pH 6 with 50 mg/L fluoride. While respiration was less affected in the cyanobacterium, C. humicola showed 30 % inhibition in respiratory activity. Resistance of C. humicola to fluoride toxicity has been attributed to the hindrance provided by the thick cell envelope, intracellular compartmentation and increase in extracellular pH as a consequence of its metabolism.  相似文献   

12.
Present study was carried out to evaluate a new bacterial strain, Lactobacillus delbreuckii subsp. bulgaricus F18 as probiotic strain. L. delbreuckii subsp. bulgaricus F18 was isolated from homemade butter and identified by conventional and molecular techniques. The 16S rRNA sequence of the isolate was registered in National Centre for Biotechnology Information (NCBI) under accession number KT865224. In the present study, L. delbreuckii subsp. bulgaricus F18 exhibited highest viable counts against acid tolerance or low pH tolerance (at pH 1 after 2h of incubation), bile tolerance (conc. 1%), autoaggregation (68%), cell surface hydrophobicity against O-xylene (33.9%), antimicrobial activity against various food borne pathogens (inhibition = 100%), antibiotic sensitivity following standard test methods suggested by various research workers.  相似文献   

13.
Genetic engineering of lactic acid bacteria (LAB) requires a reliable gene expression system. Especially, a stable promoter is an important genetic element to induce gene expression in such a system. We report on a novel tuf promoter (Ptuf) of Lactococcus lactis subsp. lactis IL1403 that was screened and selected through analysis of previously published microarray data. Ptuf activity was examined and compared with three other known lactococcal promoters (PdnaJ, PpfkA, and Pusp45) using different bacteria as expression hosts. Each promoter was, respectively, fused to the promoterless and modified bmpB gene as a reporter, and we estimated promoter activity through BmpB expression. All promoters were active in IL1403, and Ptuf activity was strongest among them. The activity of each promoter differed by host bacteria (Lactobacillus plantarum Lb25, Lactobacillus reuteri ATCC23272, and Escherichia coli Top10F’). Ptuf had the highest activity in IL1403 when growth reached late log phase. The activity of each promoter correlated with the expression of each cognate gene in the microarray data (R 2 = 0.7186, P = 0.06968). This study revealed that novel food-grade promoters such as IL1403 Ptuf can be selected from microarray data for food-grade microorganisms and Ptuf can be used to develop a reliable gene expression system in L. lactis.  相似文献   

14.
Aggregatibacter (Actinobacillus) actinomycetemcomitans P7–20 strain isolated from a periodontally diseased patient has produced a bacteriocin (named as actinomycetemcomitin) that is active against Peptostreptococcus anaerobius ATCC 27337. Actinomycetemcomitin was produced during exponential and stationary growth phases, and its amount decreased until it disappeared during the decline growth phase. It was purified by ammonium sulphate precipitation (30–60% saturation), and further by FPLC (mono-Q ionic exchange and Phenyl Superose hydrophobic interaction) and HPLC (C-18 reversed-phase). This bacteriocin loses its activity after incubation at a pH below 7.0 or above 8.0, following heating for 30 min at 45°C, and after treatment with proteolytic enzymes such as trypsin, α-chymotrypsin, and papain. Actinomycetemcomitin has a molecular mass of 20.3 KDa and it represents a new bacteriocin from A. actinomycetemcomitans.  相似文献   

15.
The objective of this study was to evaluate the ability of five strains of meat-borne bacteria to decrease N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) and to elucidate the mechanism in Mann-Rogosa-Sharp (MRS) broth. Lactobacillus pentosus R3 was found to be the most effective in decreasing the concentration of the two N-nitrosamines (NAs) in MRS broth, with a rate of 22.05% for NDMA and 23.31% for NDEA. The concentration of the two NAs could not be reduced by either extracellular metabolites or intracellular extracts of Lb. pentosus R3 (P?>?0.05), and proteinaceous substances in the cell debris were found to be responsible for the decrease. These were surface-layer proteins (SLPs) located on the cell wall. Therefore, the decrease in NDMA and NDEA by Lb. pentosus R3 is associated with its SLPs. Lb. pentosus R3 may be developed as a starter culture in the production of fermented foods with lower NAs.  相似文献   

16.
This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E 0′, of 230 ± 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 ± 0.2 × 105 M−1 s−1 was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.  相似文献   

17.
The acidification behavior of Lactobacillus bulgaricus and Streptococcus thermophilus for yoghurt production was investigated along temperature profiles within the optimal window of 38–44 °C. For the optimal acidification temperature profile search, an optimization engine module built on a modular artificial neural network (ANN) and genetic algorithm (GA) was used. Fourteen batches of yoghurt fermentations were evaluated using different temperature profiles in order to train and validate the ANN sub-module. The ANN captured the nonlinear relationship between temperature profiles and acidification patterns on training data after 150 epochs. This served as an evaluation function for the GA. The acidification slope of the temperature profile was the performance index. The GA sub-module iteratively evolved better temperature profiles across generations using GA operations. The stopping criterion was met after 11 generations. The optimal profile showed an acidification slope of 0.06117 compared to an initial value of 0.0127 and at a set point sequence of 43, 38, 44, 43, and 39 °C. Laboratory evaluation of three replicates of the GA suggested optimum profile of 43, 38, 44, 43, and 39 °C gave an average slope of 0.04132. The optimization engine used (to be published elsewhere) could effectively search for optimal profiles of different physico-chemical parameters of fermentation processes.  相似文献   

18.
According to the amino acid sequence, a codon-optimized xylanase gene (xynA1) from Thermomyces lanuginosus DSM 5826 was synthesized to construct the expression vector pHsh-xynA1. After optimization of the mRNA secondary structure in the translational initiation region of pHsh-xynA1, free energy of the 70 nt was changed from −6.56 to −4.96 cal/mol, and the spacing between AUG and the Shine-Dalgarno sequence was decreased from 15 to 8 nt. The expression level was increased from 1.3 to 13% of total cell protein. A maximum xylanase activity of 47.1 U/mL was obtained from cellular extract. The recombinant enzyme was purified 21.5-fold from the cellular extract of Escherichia coli by heat treatment, DEAE-Sepharose FF column and t-Butyl-HIC column. The optimal temperature and pH were 65 °C and pH 6.0, respectively. The purified enzyme was stable for 30 min over the pH range of 5.0–8.0 at 60 °C, and had a half-life of 3 h at 65 °C.  相似文献   

19.
Polyamines are ubiquitous polycationic compounds that mediate fundamental aspects of cell growth, differentiation, and cell death in eukaryotic and prokaryotic organisms. In plants, polyamines are implicated in a variety of growth and developmental processes, in addition to abiotic and biotic stress responses. In the last decade, mutant studies conducted predominantly in Arabidopsis thaliana revealed an obligatory requirement for polyamines in zygotic and somatic embryogenesis. Moreover, our appreciation for the intricate spatial and temporal regulation of intracellular polyamine levels has advanced considerably. The exact molecular mechanism(s) through which polyamines exert their physiological response remains somewhat enigmatic and likely serves as a major area for future research efforts. In the following review, we discuss recent advances in the plant polyamine field, which range from metabolism and mutant characterization to molecular genetics and potential mode(s) of polyamine action during growth and development in vitro and in vivo. This review will also focus on the specific role of polyamines during embryogenesis and organogenesis.  相似文献   

20.
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5 and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K m of 120 and 330 μM and V max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号