首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HEGESMA: genome search meta-analysis and heterogeneity testing   总被引:2,自引:0,他引:2  
SUMMARY: Heterogeneity and genome search meta-analysis (HEGESMA) is a comprehensive software for performing genome scan meta-analysis, a quantitative method to identify genetic regions (bins) with consistently increased linkage score across multiple genome scans, and for testing the heterogeneity of the results of each bin across scans. The program provides as an output the average of ranks and three heterogeneity statistics, as well as corresponding significance levels. Statistical inferences are based on Monte Carlo permutation tests. The program allows both unweighted and weighted analysis, with the weights for each study as specified by the user. Furthermore, the program performs heterogeneity analyses restricted to the bins with similar average ranks. AVAILABILITY: http://biomath.med.uth.gr.  相似文献   

2.
Lee YH  Nath SK 《Human genetics》2005,118(3-4):434-443
To date, several susceptibility loci for systemic lupus erythematosus (SLE) have been identified by individual genome-wide scans, but many of these loci have shown inconsistent results across studies. Additionally, many individual studies are at the lower limit of acceptable power recommended for declaring significant linkage. The genome search meta-analysis (GSMA) has been proposed as a valid and robust method for combining several genome scan results. The aim of this study is to investigate whether there is any consistent evidence of linkage across multiple studies, and to identify novel SLE susceptibility loci by using GSMA method. Twelve genome scan results generated from nine independent studies have been used for the present GSMA. All together, the data consists of 605 families with 1,355 SLE affected individuals from three self-reported ethnicities; Caucasian, African-American, and Hispanic. For each study, the genome was divided into 120 bins (30 cM) and ranked according to the maximum evidence of linkage within each bin. The ranks were summed and averaged across studies following which the significance was assessed by the permutation tests. The present study identified two genomic locations at 6p22.3–6p21.1 and 16p12.3–16q12.2 that met genome-wide significance (p<0.000417). The identified region at 6p22.3–6p21.1 contains the HLA region. The combined p-values using Fisher’s method also supported the significance in these regions. Clustering of significant adjacent bins was observed for chromosomes 6 and 16. Additionally, there are 12 other bins with two point-wise p-values (Psumrnk and Pord) <0.05, suggesting that these bin regions are highly likely to contain SLE susceptibility loci. Among them, present GSMA also identified two novel regions at 4q32.1–4q34.3 and 13q13.2–13q22.2. However, separate analysis using only Caucasian populations identified the strongest evidence for linkage at chromosome 6p21.1–6q15 (Psumrnk=0.00021). One interesting novel region suggests that 3q22.1–3q25.33 (Psumrnk=0.01376) may be an ethnicity-specific SLE linkage. In summary, the present GSMA have identified two statistically significant genomic regions that reconfirmed the SLE linkage at chromosomes 6 and 16.  相似文献   

3.
Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.  相似文献   

4.
Sarcoidosis, a systemic granulomatous disease, likely results from both environmental agents and genetic susceptibility. Sarcoidosis is more prevalent in women and, in the United States, African Americans are both more commonly and more severely affected than Caucasians. We report a follow up of the first genome scan for sarcoidosis susceptibility genes in African Americans. Both the genome scan and the present study comprise 229 African American nuclear families ascertained through two or more sibs with sarcoidosis. Regions studied included those which reached a significance in the genome scan of 0.01 (2p25, 5q11, 5q35, 9q34, 11p15 and 20q13), 0.05 (3p25 and 5p15–13) or which replicated previous findings (3p14–11). We performed genotyping with additional markers in the same families used in the genome scan. We examined multi-locus models for epistasis and performed model-based linkage analysis on subsets of the most linked families to characterize the underlying genetic model. The strongest signal was at marker D5S407 (P=0.005) on 5q11.2, using both full and half sibling pairs. Our results support, in an African American population, a sarcoidosis susceptibility gene on chromosome 5q11.2, and a gene protective for sarcoidosis on 5p15.2. These fine mapping results further prioritize the importance of candidate regions on chromosomes 2p25, 3p25, 5q35, 9q34, 11p15 and 20q13 for African Americans. Additionally, our results suggest joint action of the effects of putative genes on chromosome 3p14–11 and 5p15.2. We conclude that multiple susceptibility loci for sarcoidosis exist in African Americans and that some may have interdependent effects on disease pathogenesis.  相似文献   

5.
A genetic linkage map of bovine Chromosome (Chr) 7 was generated with a Bos taurus×Bos gaurus interspecific hybrid backcross panel. This study included six previously mapped microsatellites and five unmapped expressed genes that were identified by PCR-based restriction fragment length variants (RFLVs). The gene order (from centromere to telomere) and the map distances (in centimorgans) are as follows: cen–BM2607–11.2–LDLR–3.6–AMH,CSF2–11.2–BP41–19–BM6117–19–SPARC–14.4–FGFA–15.5–BM1853–11.2–RASA–18.8–ILSTS006. Previous comparative synteny mapping demonstrated that bovine Chr 7 shares homologous regions with both HSA5q and HSA19p. A break or fusion between AMH and CSF2 in an ancestral chromosome is suggested to account for the current arrangement of these homologous segments in the human and bovine genomes. In this study, we demonstrate that a short proximal portion of BTA7 is homologous with HSA19p, while a larger distal portion of BTA7 is homologous with human Chr 5q. The orientation of these conserved human segments on BTA7 is also demonstrated. Our data show that the linear order of genes has not been conserved within the homologous region of HSA5 and BTA7, and one chromosomal translocation or inversion is proposed to account for this difference. Received: 11 June 1996 / Accepted: 9 November 1996  相似文献   

6.
Genome scans of bipolar disorder (BPD) have not produced consistent evidence for linkage. The rank-based genome scan meta-analysis (GSMA) method was applied to 18 BPD genome scan data sets in an effort to identify regions with significant support for linkage in the combined data. The two primary analyses considered available linkage data for “very narrow” (i.e., BP-I and schizoaffective disorder–BP) and “narrow” (i.e., adding BP-II disorder) disease models, with the ranks weighted for sample size. A “broad” model (i.e., adding recurrent major depression) and unweighted analyses were also performed. No region achieved genomewide statistical significance by several simulation-based criteria. The most significant P values (<.01) were observed on chromosomes 9p22.3-21.1 (very narrow), 10q11.21-22.1 (very narrow), and 14q24.1-32.12 (narrow). Nominally significant P values were observed in adjacent bins on chromosomes 9p and 18p-q, across all three disease models on chromosomes 14q and 18p-q, and across two models on chromosome 8q. Relatively few BPD pedigrees have been studied under narrow disease models relative to the schizophrenia GSMA data set, which produced more significant results. There was no overlap of the highest-ranked regions for the two disorders. The present results for the very narrow model are promising but suggest that more and larger data sets are needed. Alternatively, linkage might be detected in certain populations or subsets of pedigrees. The narrow and broad data sets had considerable power, according to simulation studies, but did not produce more highly significant evidence for linkage. We note that meta-analysis can sometimes provide support for linkage but cannot disprove linkage in any candidate region.  相似文献   

7.
We report on three unrelated mentally disabled patients, each carrying a de novo balanced translocation that truncates the autism susceptibility candidate 2 (AUTS2) gene at 7q11.2. One of our patients shows relatively mild mental retardation; the other two display more profound disorders. One patient is also physically disabled, exhibiting urogenital and limb malformations in addition to severe mental retardation. The function of AUTS2 is presently unknown, but it has been shown to be disrupted in monozygotic twins with autism and mental retardation, both carrying a translocation t(7;20)(q11.2;p11.2) (de la Barra et al. in Rev Chil Pediatr 57:549–554, 1986; Sultana et al. in Genomics 80:129–134, 2002). Given the overlap of this autism/mental retardation (MR) phenotype and the MR-associated disorders in our patients, together with the fact that mapping of the additional autosomal breakpoints involved did not disclose obvious candidate disease genes, we ascertain with this study that AUTS2 mutations are clearly linked to autosomal dominant mental retardation.  相似文献   

8.
Infantile hypertrophic pyloric stenosis (IHPS) is the most common inherited form of gastrointestinal obstruction in infancy with a striking male preponderance. Infants present with vomiting due to gastric outlet obstruction caused by hypertrophy of the smooth muscle of the pylorus. Two loci specific to extended pedigrees displaying autosomal dominant inheritance have been identified. A genome scan identified loci on chromosomes 11q14–q22 and Xq23–q24 which are predicted to be responsible for a subset of smaller families with IHPS demonstrating non-Mendelian inheritance. The two linked chromosomal regions both harbour functional candidate genes which are members of the canonical transient receptor potential (TRPC) family of ion channels. Both TRPC5 (Xq23–q24) and TRPC6 (11q14–q22) have a potential role in smooth muscle control and hypertrophy. Here, we report suggestive evidence for a third locus on chromosome 3q12–q25 (Z max = 2.7, p < 0.004), a region which harbours a third TRPC gene, TRPC1. Fine mapping of all three genes using a tagSNP approach and re-sequencing identified a SNP in the promoter region of TRPC6 and a missense variant in exon 4 of TRPC6 which may be putative causal variants.  相似文献   

9.
Chromosome 22 contains two potential schizophrenia loci on chromosomal regions 22q11.2 and 22q12–13. In the present study we report results from linkage mapping of the gene coding for the human A2a adenosine receptor (AR), which is one of two receptors mediating central nervous system effects of adenosine. From seven CEPH (Centre d’Etude du Polymorphisme Humain) families, 120 individuals were typed utilizing an intragenic restriction fragment length polymorphism. Significant linkage was found with many markers on chromosome 22. A 10-cM 1000 :1 support interval between markers D22S301 and D22S300 is defined on the CHLC (Cooperative Human Linkage Center) framework map of chromosome 22. Localization of the A2aAR gene outside the CATCH 22 syndrome region on 22q11.2 is demonstrated by the observation of heterozygous individuals with defined 2-Mb deletions from this region. Thus, the A2aAR gene is not the schizophrenia susceptibility gene suspected in the CATCH 22 syndrome region on 22q11.2, but remains a candidate for a schizophrenia susceptibility gene on 22q12–13. Received: 10 August 1996  相似文献   

10.
The eukaryotic genome contains a putative ATPase gene family that encodes proteins with one or two highly conserved domain(s) of approximately 230 amino acids. These proteins have diverse cellular functions and mutation in at least one member of the family has been associated with human disease, while mutations in other family members are known to cause cell cycle defects in yeast. Therefore it is of interest to map more family members and so we have localized PSMC5 (the thyroid hormone receptor-interacting protein, TRIP1) and PSMC3 (the Tat-binding protein, TBP1) to chromosomes 17q24– q25 and 11p12–p13, respectively. We also present the map position of a probable PSMC3 processed pseudogene locus on chromosome 9p. Received: 18 July 1996  相似文献   

11.
We studied patients with idiopathic Parkinson’s disease (PD) from an isolated population in the Netherlands aiming to map gene(s) involved in PD susceptibility. A total of 109 parkinsonism patients were independently ascertained, of whom 62 presented late-onset, idiopathic PD. Genealogical research showed that 45 index cases with idiopathic PD were linked to a common ancestor, indicating familiar clustering among the patients. This strong familial clustering was highly significant (P=0.005) when compared to random controls from the same population. We performed a genome wide scan using 382 polymorphic markers in 44 distantly related PD patients plus 112 unaffected first-degree relatives and spouses. Our genome wide association analysis (DISLAMB) revealed evidence of association at a nominal P-value<0.01 for markers D2S2333, D4S405, D9S158, D13S153. Other regions on chromosomes 3p, 4q, 14q, 17p and 17q were found at a significance level of P<0.05. In a follow-up study, we investigated all the positive regions using a denser marker set and a larger sample (total of 630 individuals including all late-onset PD patients). The strongest evidence for association remained for the 9q and 14q region. A significant association was found for marker D9S1838 (OR=2.0, 95% CI 1.1–3.5, P=0.014) and D14S65 (OR=3.2, 95% CI 1.7–6.1, P<0.001). Moreover, a common haplotype with excess of sharing among late-onset PD cases was observed on both regions. Our results suggest the existence of two loci influencing PD susceptibility on chromosome 9q and 14q.  相似文献   

12.
DNA reassociation kinetics were used to determine nuclear genome organization and complexity in four species of Gracilaria (Gracilariales, Rhodophyta). In Gracilaria tikvahiae, G. caudata, G. cervicornis and G. divaricata, results indicate the presence of three second order components corresponding to fast, intermediate and slow fractions. Repetitive sequences varied from 13–46% and unique DNA ranged from 45–78%, Thermal denaturation (T m) indicated guanine + cytosine (G + C) levels of 41.9–46.0 mol % G + C. Microspectrophotometry with the DNA-localizing fluorochrome DAPI was used to quantify nuclear DNA content. Comparisons of mean nuclear DNA (I f) values to chicken erythrocytes (RBC) resulted in an estimate of 0.37–0.40 pg/2C genomes for the four Gracilaria species. Total agar content following alkaline pretreatment ranged from 7–15% dry weight. Gel strengths were generally below commercial levels, ranging from 40–260 g cm−2 Nuclear genome profiles developed from information for genome size, organization and complexity are compared with data for agar quantity and quality. Gel quality and quantity do not appear to be correlated with either large repetitive fraction DNA or a high degree of genome complexity as previously speculated.  相似文献   

13.
Multiple linkage regions have been reported in schizophrenia, and some appear to harbor susceptibility genes that are differentially expressed in postmortem brain tissue derived from unrelated individuals. We combined traditional genome-wide linkage analysis in a multiplex family with lymphocytic genome-wide expression analysis. A genome scan suggested linkage to a chromosome 4q marker (D4S1530, LOD 2.17, θ=0) using a dominant model. Haplotype analysis using flanking microsatellite markers delineated a 14 Mb region that cosegregated with all those affected. Subsequent genome-wide scan with SNP genotypes supported the evidence of linkage to 4q33–35.1 (LOD=2.39) using a dominant model. Genome-wide microarray analysis of five affected and five unaffected family members identified two differentially expressed genes within the haplotype AGA and GALNT7 (aspartylglucosaminidase and UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7) with nominal significance; however, these genes did not remain significant following analysis of covariance. We carried out genome-wide linkage analyses between the quantitative expression phenotype and genetic markers. AGA expression levels showed suggestive linkage to multiple markers in the haplotype (maximum LOD=2.37) but to no other genomic region. GALNT7 expression levels showed linkage to regulatory loci at 4q28.1 (maximum LOD=3.15) and in the haplotype region at 4q33–35.1 (maximum LOD=2.37). ADH1B (alcohol dehydrogenase IB) was linked to loci at 4q21–q23 (maximum LOD=3.08) and haplotype region at 4q33–35.1 (maximum LOD=2.27). Seven differentially expressed genes were validated with RT-PCR. Three genes in the 4q33–35.1 haplotype region were also differentially expressed in schizophrenia in postmortem dorsolateral prefrontal cortex: AGA, HMGB2, and SCRG1. These results indicate that combining differential gene expression with linkage analysis may help in identifying candidate genes and potential regulatory sites. Moreover, they also replicate recent findings of complex trans- and cis- regulation of genes.  相似文献   

14.
Genome copy number variation (CNV) is one of the mechanisms to regulate the expression level of genes which contributes to the development and progression of cancer. In order to investigate the regions of high-level amplification and potential target genes within these amplicons in hepatocellular carcinoma (HCC), we analyzed HCC cell line (TJ3ZX-01) for CNV regions at the whole genome level using GeneChip Human Mapping 500K array, and also examined the relative copy number and expression levels of the related genes at candidate amplicons in 41 HCC tissues via real-time fluorescence quantitative PCR methods. Through analysis of sequence tag site (STS) markers by quantitative PCR, The two candidate amplicons at 1q found by SNP array were shown to occur in 56.1% (23/41) HCC samples at 1q21 and 80.5% (33/41) at 1q22–23.1. Wilcoxon signed rank test showed expression of CD1d, which located at amplicon of 1q22–23.1 increased significantly within tumor tissues compared with paired nontumor tissues. Our study provides evidences that a novel, high-level amplicon at 1q22–23.1 occurs in both HCC cell line and tissues. CD1d is a potential target for this amplicon in HCC. The up-regulation of CD1d may be used as a novel molecular signature for diagnosis and prognosis of HCC.  相似文献   

15.
The telomeres of the yeast Saccharomyces cerevisiae consist of a duplex region of TG1–3 repeats that acquire a single-stranded 3’ extension of the TG1–3 strand at the end of S-phase. The length of these repeats is kept within a defined range by regulators such as the TEL2-encoded protein (Tel2p). Here we show that Tel2p can specifically bind to single-stranded TG1–3. Tel2p binding produced several shifted bands; however, only the slowest migrating band contained Tel2p. Methylation protection and interference experiments as well as gel shift experiments using inosine-containing probes indicated that the faster migrating bands resulted from Tel2p-mediated formation of DNA secondary structures held together by G-G interactions. Tel2p bound to single-stranded substrates that were at least 19 bases in length and contained 14 bases of TG1–3, and also to double-stranded/single-stranded hybrid substrates with a 3’ TG1–3 overhang. Tel2p binding to a hybrid substrate with a 24 base single-stranded TG1–3 extension also produced a band characteristic of G-G-mediated secondary structures. These data suggest that Tel2p could regulate telomeric length by binding to the 3’ single-stranded TG1–3 extension present at yeast telomeres. Received: 12 November 1998; in revised form: 6 April 1999 / Accepted: 13 April 1999  相似文献   

16.
Objective: The objective was to provide an overall assessment of genetic linkage data of BMI and BMI‐defined obesity using a nonparametric genome scan meta‐analysis. Research Methods and Procedures: We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome‐wide logarithm of the odds (LOD) scores, non‐parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI‐defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Results: Bins at chromosome 13q13.2‐ q33.1, 12q23‐q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3‐22.3 were also observed for BMI‐defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1‐qter and 12p11.21‐q23 (p < 0.01). Conclusion: Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.  相似文献   

17.
Interspecific hybrid backcross animals from a Bos taurus×Bos gaurus F1 female were used to construct a linkage map of bovine Chromosome (Chr) 19. This map includes eight previously unmapped type I anchor loci, CHRNB1, CRYB1, GH1, MYL4, NF1, P4HB, THRA1, TP53, and five microsatellite markers, HEL10, BP20, MAP2C, ETH3, BMC1013, from existing linkage maps. The linkage relationship was determined to be centromere–HEL10–18.8cM–NF1–4.0cM–CRYB1–11.2cM–(BP20, CHRNB1, TP53)–4.0cM–(MAP2C, GH1, MYL4, THRA1)–14.4cM–P4HB–11.2cM–ETH3–4.0cM–BMC1013. It was previously revealed that bovine Chr 19 contains the largest known conserved autosomal synteny among human, bovine, and mouse. This study has shown that gene orders within this segment are not conserved among the three species. We propose structural changes in an ancestral mammalian chromosome to account for these differences. This is the first interspecific hybrid backcross used in bovine linkage studies, and it has proven to be an effective tool for incorporating bovine type I loci into the linkage map even with the small sample size presently available. This resource will facilitate the generation of comparative linkage maps that address gene order and effectively predict the locations of unmapped loci across species. Received: 11 June 1996 / Accepted: 19 November 1996  相似文献   

18.
Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0–50 g l−1 in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51–0.74 to 0.20–0.22 mg mg−1 and the maximum specific rate of substrate utilization, declined from 0.25–0.42 to 0.07–0.11 h−1, as the salinity increased from 0 to 50 NaCl g l−1. The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K T(S), were 22.7–29.7 g l−1 for substrate degradation and K T(μ), 13.0–19.0 g l−1, for biomass formation. The calculated ratios for the bacterial maintenance rate, m S, to further indicated that the percentage energy spent on maintenance increased from 19–24 to 86–91% as salinity level increased from 0 to 50 g l−1. These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.  相似文献   

19.
Construction of a genetic linkage map for roses using RAPD and AFLP markers   总被引:15,自引:0,他引:15  
A segregating population of diploid rose hybrids (2n = 2x = 14) was used to construct the first linkage maps of the rose genome. A total of 305 RAPD and AFLP markers were analysed in a population of 60 F1 plants based on a so-called ”double-pseudotestcross” design. Of these markers 278 could be located on the 14 linkage groups of the two maps, covering total map lengths of 326 and 370 cM, respectively. The average distances between markers in the maps for 93/1–117 and 93/1–119 is 2.4 and 2.6 cM, respectively. In addition to the molecular markers, genes controlling two phenotypic characters, petal number (double versus single flowers) and flower colour (pink versus white), were mapped on linkage groups 3 and 2, respectively. The markers closest to the gene for double flowers, Blfo, and to the gene for pink flower colour, Blfa, cosegregated without recombinants. The maps provide a tool for further genetic analyses of horticulturally important genes as, for example, resistance genes and a starting point for marker-assisted breeding in roses. Received: 22 September 1998 / Accepted: 12 March 1999  相似文献   

20.
The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35–38%), 4p15.2 (D3: 37–40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37–59%) and 4q35.1 (D6: 40–50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri →CIN → CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (−432 to + 55 bp), CC and AA haplotypes were seen in −227 and −195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号