首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sodium channels are key proteins in regulating neuronal excitability and accumulating data suggest that specific subtypes of voltage-dependent sodium channels are important in signaling various types of pain. Consistent with this theme, Jarvis et al.(7) recently reported the identification of a subtype-selective Na(v)1.8 blocker that was active in several pre-clinical models of pain. During the course of these studies compounds were also identified that showed large differences in potency when tested on Na(v)1.8 channels from different species. This addendum illustrates one of these compounds along with the potency correlation between recombinant and native tetrodotoxin-resistant sodium channels for additional examples. These data show that significant differences can be observed for sodium channel blockers across species and highlight the importance of considering this possibility when searching for new compounds and research tools to probe sodium channel function.  相似文献   

2.
Voltage-gated sodium channels and pain pathways   总被引:21,自引:0,他引:21  
Acute, inflammatory, and neuropathic pain can all be attenuated or abolished by local treatment with sodium channel blockers such as lidocaine. The peripheral input that drives pain perception thus depends on the presence of functional voltage-gated sodium channels. Remarkably, two voltage-gated sodium channel genes (Nav1.8 and Nav1.9) are expressed selectively in damage-sensing peripheral neurons, while a third channel (Nav1.7) is found predominantly in sensory and sympathetic neurons. An embryonic channel (Nav1.3) is also upregulated in damaged peripheral nerves and associated with increased electrical excitability in neuropathic pain states. A combination of antisense and knock-out studies support a specialized role for these sodium channels in pain pathways, and pharmacological studies with conotoxins suggest that isotype-specific antagonists should be feasible. Taken together, these data suggest that isotype-specific sodium channel blockers could be useful analgesics.  相似文献   

3.
We have previously reported that enhanced excitability of dorsal root ganglia (DRG) neurons contributes to the development of bone cancer pain, which severely decreases the quality of life of cancer patients. Nav1.8, a tetrodotoxin-resistant (TTX-R) sodium channel, contributes most of the sodium current underlying the action potential upstroke and accounts for most of the current in later spikes in a train. We speculate that the Nav1.8 sodium channel is a potential candidate responsible for the enhanced excitability of DRG neurons in rats with bone cancer pain. Here, using electrophysiology, Western blot and behavior assays, we documented that the current density of TTX-R sodium channels, especially the Nav1.8 channel, increased significantly in DRG neurons of rats with cancer-induced bone pain. This increase may be due to an increased expression of Nav1.8 on the membrane of DRG neurons. Accordantly, blockade of Nav1.8 sodium channels by its selective blocker A-803467 significantly alleviated the cancer-induced mechanical allodynia and thermal hyperalgesia in rats. Taken together, these results suggest that functional upregulation of Nav1.8 channels on the membrane of DRG neurons contributes to the development of cancer-induced bone pain.  相似文献   

4.
The synthesis and pharmacological characterization of a novel furan-based class of voltage-gated sodium channel blockers is reported. Compounds were evaluated for their ability to block the tetrodotoxin-resistant sodium channel Na(v)1.8 (PN3) as well as the Na(v)1.2 and Na(v)1.5 subtypes. Benchmark compounds from this series possessed enhanced potency, oral bioavailability, and robust efficacy in a rodent model of neuropathic pain, together with improved CNS and cardiovascular safety profiles compared to the clinically used sodium channel blockers mexiletine and lamotrigine.  相似文献   

5.
Voltage-gated sodium channels in nociceptive neurons are attractive targets for novel pain therapeutics. Although drugs that target voltage-gated sodium channels have proven value as pain therapeutics, the drugs that are currently available are non-specific sodium channel inhibitors, which limit their usefulness. Recently, a selective small-molecule inhibitor of Na(v)1.8, a voltage-gated sodium channel isoform that participates in peripheral pain mechanisms, has been developed. This exciting new compound shows efficacy in several animal models of pain and is anticipated to be only the first of many new isoform-specific sodium channel blockers.  相似文献   

6.
Voltage-gated sodium channels (Nav1) transmit pain signals from peripheral nociceptive neurons, and blockers of these channels have been shown to ameliorate a number of pain conditions. Because these drugs can have adverse effects that limit their efficacy, more potent and selective Nav1 inhibitors are being pursued. Recent human genetic data have provided strong evidence for the involvement of the peripheral nerve sodium channel subtype, Nav1.7, in the signaling of nociceptive information, highlighting the importance of identifying selective Nav1.7 blockers for the treatment of chronic pain. Using a high-throughput functional assay, novel Nav1.7 blockers, namely, the 1-benzazepin-2-one series, have recently been identified. Further characterization of these agents indicates that, in addition to high-affinity inhibition of Nav1.7 channels, selectivity against the Nav1.5 and Nav1.8 subtypes can also be achieved within this structural class. The most potent, nonselective member of this class of Nav1.7 blockers has been radiolabeled with tritium. [3H]BNZA binds with high affinity to rat brain synaptosomal membranes (Kd = 1.5 nM) and to membranes prepared from HEK293 cells stably transfected with hNav1.5 (Kd = 0.97 nM). In addition, and for the first time, high-affinity binding of a radioligand to hNav1.7 channels (Kd = 1.6 nM) was achieved with [3H]BNZA, providing an additional means for identifying selective Nav1.7 channel inhibitors. Taken together, these data suggest that members of the novel 1-benzazepin-2-one structural class of Nav1 blockers can display selectivity toward the peripheral nerve Nav1.7 channel subtype, and with appropriate pharmacokinetic and drug metabolism properties, these compounds could be developed as analgesic agents.  相似文献   

7.
Our knowledge of the ion channels, receptors and signalling mechanisms involved in pain pathophysiology, and which specific channels play a role in subtypes of pain such as neuropathic and inflammatory pain, has expanded considerably in recent years. It is now clear that in the neuropathic state the expression of certain channels is modified, and that these changes underlie the plasticity of responses that occur to generate inappropriate pain signals from normally trivial inputs. Pain is modulated by a subset of the voltage-gated sodium channels, including Nav1.3, Nav1.7, Nav1.8 and Nav1.9. These isoforms display unique expression patterns within specific tissues, and are either up- or down-regulated upon injury to the nervous system. Here we describe our current understanding of the roles of sodium channels in pain and nociceptive information processing, with a particular emphasis on neuropathic pain and drugs useful for the treatment of neuropathic pain that act through mechanisms involving block of sodium channels. One of the future challenges in the development of novel sodium channel blockers is to design and synthesise isoform-selective channel inhibitors. This should provide substantial benefits over existing pain treatments.  相似文献   

8.
In our recent publication, we describe the local anesthetic (LA) inhibition of the prokaryotic voltage gated sodium channel NaChBac. Despite the numerous functional and putative structural differences with the mammalian sodium channels, the data show that LA compounds effectively and reversibly inhibit NaChBac channels in a concentration range similar to resting blockade on eukaryotic Navs. In addition to current reduction, LA application accelerated channel inactivation kinetics of NaChBac which could be accounted for in a simple state-model whereby local anesthetics increase the probability of entering the inactivated state. We have further explored what state (or states) local anesthetic blockade of NaChBac could pertain to eukaryotic sodium channels, and what molecular similarities exist between these disparate channel families. Here we show that the rate of recovery from inactivation remains unaffected in the presence of local anesthetics. Further, we show that two sites that support use-dependent inhibition in eukaryotic channels, do not affect block to the same extent when mutated in NaChBac channels. The data indicate that the molecular determinants and the inherent mechanisms for LA block are likely to be divergent between bacterial and eukaryotic Navs, but future experiments will help define possible similarities.  相似文献   

9.
In our recent publication, we describe the local anesthetic (LA) inhibition of the prokaryotic voltage gated sodium channel NaChBac. Despite the numerous functional and putative structural differences with the mammalian sodium channels, the data show that LA compounds effectively and reversibly inhibit NaChBac channels in a concentration range similar to resting blockade on eukaryotic Navs. In addition to current reduction, LA application accelerated channel inactivation kinetics of NaChBac which could be accounted for in a simple state-model whereby local anesthetics increase the probability of entering the inactivated state. We have further explored what state (or states) local anesthetic blockade of NaChBac could pertain to eukaryotic sodium channels, and what molecular similarities exist between these disparate channel families. Here we show that the rate of recovery from inactivation remains unaffected in the presence of local anesthetics. Further, we show that two sites that support use-dependent inhibition in eukaryotic channels, do not affect block to the same extent when mutated in NaChBac channels. The data indicate that the molecular determinants and the inherent mechanisms for LA block are likely to be divergent between bacterial and eukaryotic Navs, but future experiments will help define possible similarities.  相似文献   

10.
The role of voltage-gated sodium channels in neuropathic pain   总被引:7,自引:0,他引:7  
Use-dependent inhibitors of voltage-gated sodium channels (VGSC) are important therapeutic tools for chronic pain management, but are limited by possible severe side effects. Recent studies have provided much new information on the function of several voltage-gated sodium channels that are predominantly expressed in peripheral sensory neurons, and on their possible link to pathological pain states arising from injuries to the sensory nerve. The use of antisense oligonucleotides to target specific channel subtypes shows that the functional localization of the channel subtype Na(V)1.8 after nerve injury is essential for persistent pain states. The putative roles of Na(V)1.3 and Na(V)1.9 in neuropathic pain are also discussed. These studies may form a basis for developing inhibitors to target specific channel subtype(s) for use in chronic pain treatment.  相似文献   

11.
Bosmans F  Aneiros A  Tytgat J 《FEBS letters》2002,532(1-2):131-134
Two sodium channel toxins, BgII and BgIII, isolated from the sea anemone Bunodosoma granulifera, have been subjected to an elaborate electrophysiological and pharmacological comparison between five different cloned sodium channels expressed in Xenopus laevis oocytes in order to determine their efficacy, potency and selectivity. Our results reveal large differences in toxin-induced effect between the different sodium channels. These toxins possess the highest efficacy for the insect sodium channel (para). Our data also show that BgII, generally known as a neurotoxin, is especially potent on the insect sodium channel with an EC(50) value of 5.5+/-0.5 nM. Therefore, this toxin can be used as a template for further development of new insecticides. Based on our findings, an evolutionary relationship between crustaceans and insects is also discussed.  相似文献   

12.
Voltage-gated sodium channels are crucial determinants of neuronal excitability and signalling; some specific channel subtypes have been implicated in a number of chronic pain conditions. Human genetic studies show gain-of-function or loss-of-function mutations in Na(V)1.7 lead to an enhancement or lack of pain, respectively, whilst transgenic mouse and knockdown studies have implicated Na(V)1.3, Na(V)1.8 and Na(V)1.9 in peripheral pain pathways. The development of subtype-specific sodium channel blockers, though clearly desirable, has been technically challenging. Recent advances exploiting both natural products and small molecule selective channel blockers have demonstrated that this approach to pain control is feasible. These observations provide a rationale for the development of new analgesics without the side effect profile of broad spectrum sodium channel blockers.  相似文献   

13.
Voltage-gated sodium channels have been shown to play a critical role in neuropathic pain. With a goal to develop potent peripherally active sodium channel blockers, a series of low molecular weight biaryl substituted imidazoles, oxazoles, and thiazole carboxamides were identified with good in vitro and in vivo potency.  相似文献   

14.
We study how functional constraints bound and shape evolution through an analysis of mammalian voltage-gated sodium channels. The primary function of sodium channels is to allow the propagation of action potentials. Since Hodgkin and Huxley, mathematical models have suggested that sodium channel properties need to be tightly constrained for an action potential to propagate. There are nine mammalian genes encoding voltage-gated sodium channels, many of which are more than approximately 90% identical by sequence. This sequence similarity presumably corresponds to similarity of function, consistent with the idea that these properties must be tightly constrained. However, the multiplicity of genes encoding sodium channels raises the question: why are there so many? We demonstrate that the simplest theoretical constraints bounding sodium channel diversity--the requirements of membrane excitability and the uniqueness of the resting potential--act directly on constraining sodium channel properties. We compare the predicted constraints with functional data on mammalian sodium channel properties collected from the literature, including 172 different sets of measurements from 40 publications, wild-type and mutant, under a variety of conditions. The data from all channel types, including mutants, obeys the excitability constraint; on the other hand, channels expressed in muscle tend to obey the constraint of a unique resting potential, while channels expressed in neuronal tissue do not. The excitability properties alone distinguish the nine sodium channels into four different groups that are consistent with phylogenetic analysis. Our calculations suggest interpretations for the functional differences between these groups.  相似文献   

15.
Structural modifications of the neuronal calcium channel blocker MONIRO-1, including constraining the phenoxyaniline portion of the molecule and replacing the guanidinium functionality with tertiary amines, led to compounds with significantly improved affinities for the endogenously expressed CaV2.2 channel in the SH-SY5Y neuroblastoma cell line. These analogues also showed promising activity towards the CaV3.2 channel, recombinantly expressed in HEK293T cells. Both of these ion channels have received attention as likely targets for the treatment of neuropathic pain. The dibenzoazepine and dihydrobenzodiazepine derivatives prepared in this study show an encouraging combination of neuronal calcium ion channel inhibitory potency, plasma stability and potential to cross the blood–brain-barrier.  相似文献   

16.

Introduction  

A subgroup of voltage gated sodium channels including Nav1.8 are exclusively expressed on small diameter primary afferent neurons and are therefore believed to be integral to the neurotransmission of nociceptive pain. The present study examined whether local application of A-803467, a selective blocker of the Nav 1.8 sodium channel, can reduce nociceptive transmission from the joint in a rodent model of osteoarthritis (OA).  相似文献   

17.
Chronic pain states and epilepsies are common therapeutic targets of voltage-gated sodium channel blockers. Inhibition of sodium channels results in central muscle relaxant activity as well. Selective serotonin reuptake inhibitors are also applied in the treatment of pain syndromes. Here, we investigate the pharmacodynamic interaction between these two types of drugs on spinal neurotransmission in vitro and in vivo. Furthermore, the ability of serotonin reuptake inhibitors to modulate the anticonvulsant and windup inhibitory actions and motor side effect of the sodium channel blocker lamotrigine was investigated. In the hemisected spinal cord model, we found that serotonin reuptake inhibitors increased the reflex inhibitory action of sodium channel blockers. The interaction was clearly more than additive. The potentiation was prevented by blocking 5-HT(2) receptors and PKC, and mimicked by activation of these targets by selective pharmacological tools, suggesting the involvement of 5-HT(2) receptors and PKC in the modulation of sodium channel function. The increase of sodium current blocking potency of lamotrigine by PKC activation was also demonstrated at cellular level, using the whole-cell patch clamp method. Similar synergism was found in vivo, in spinal reflex, windup, and maximal electroshock seizure models, but not in the rotarod test, which indicate enhanced muscle relaxant, anticonvulsant and analgesic activities with improved side effect profile. Our findings are in agreement with clinical observations suggesting that sodium channel blocking drugs, such as lamotrigine, can be advantageously combined with selective serotonin reuptake inhibitors in some therapeutic fields, and may help to understand the molecular mechanisms underlying the interaction.  相似文献   

18.
The present study examines the possible role of sodium channels in the behavioral effects of cocaine. Cocaine congeners are apparent competitive inhibitors of the scorpion toxin-enhanced binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels in mouse cerebrocortical synaptosomes. However, in agreement with the allosteric model for heterotropic cooperative interactions, the compounds produce a concentration-dependent increase in the rate of dissociation of binding. Concentrations that give a 2-fold increase of k-1 are close to Ki values for inhibiting equilibrium binding of [3H]bactrachotoxinin A 20-alpha-benzoate, suggesting that the inhibitory effect on binding results mostly from an increase of the apparent dissociation rate constant. The ester linkage between the tropane and benzoyl ring of cocaine is not essential for the inhibitory potency, and for both the C-2 and C-3 substituents the equatorial position results in a higher potency than the axial position. There is reasonable agreement between the rank order of potencies in blocking the sodium channel and in inhibiting locomotor behavior. The present results do not support a relationship between the capability of cocaine congeners in blocking sodium flux and in inhibiting uptake of dopamine into striatal synaptosomes. However, peak levels of cocaine in the brain of cocaine addicts could be high enough to interfere with sodium channel functioning, possibly contributing to some of cocaine's actions.  相似文献   

19.
Voltage-dependent sodium channels control the transient inward current responsible for the action potential in most excitable cells. Members of this multigene family have been cloned, sequenced, and functionally expressed from various tissues and species, and common features of their structure have clearly emerged. Site-directed mutagenesis coupled with in vitro expression has provided additional insight into the relationship between structure and function. Subtle differences between sodium channel isoforms are also important, and aspects of the regulation of sodium channel gene expression and the modulation of channel function are becoming topics of increasing importance. Finally, sodium channel mutations have been directly linked to human disease, yielding insight into both disease pathophysiology and normal channel function. After a brief discussion of previous work, this review will focus on recent advances in each of these areas.  相似文献   

20.
Current records from voltage-clamped membrane patches containing two batrachotoxin-modified sodium channels were analyzed to determine whether these channels are identical and independent. In most two-channel patches, the experimentally observed probabilities that zero, one, or two channels are open differ from the binomial distribution, demonstrating that the two channels are nonidentical or nonindependent or both. From the same current records, we also determined the rate for the transition from two open channels to one open channel and for the transition from one open channel to zero open channels. These data are consistent with closing rates for the two channels that are equal and independent. Both probability and closing rate data can be fit by a model wherein the channels are identical, the closing rates are independent, and the opening rate is greater when the other channel is closed than when it is open. The implications of this model for analyzing noise spectra and current variance are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号