首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LKB1 is mutated in both familial and spontaneous tumors, and acts as a master kinase that activates the PAR-1 polarity kinase and the adenosine 5'monophosphate-activated kinase (AMPK). This has led to the hypothesis that LKB1 acts as a tumor suppressor because it is required to maintain cell polarity and growth control through PAR-1 and AMPK, respectively. However, the genetic analysis of LKB1-AMPK signaling in vertebrates has been complicated by the existence of multiple redundant AMPK subunits. We describe the identification of mutations in the single Drosophila melanogaster AMPK catalytic subunit AMPKalpha. Surprisingly, ampkalpha mutant epithelial cells lose their polarity and overproliferate under energetic stress. LKB1 is required in vivo for AMPK activation, and lkb1 mutations cause similar energetic stress-dependent phenotypes to ampkalpha mutations. Furthermore, lkb1 phenotypes are rescued by a phosphomimetic version of AMPKalpha. Thus, LKB1 signals through AMPK to coordinate epithelial polarity and proliferation with cellular energy status, and this might underlie the tumor suppressor function of LKB1.  相似文献   

2.
LKB1 and AMP-activated protein kinase (AMPK) are serine-threonine kinases implicated in key cellular pathways, including polarity establishment and energy sensing, respectively. Recent in vivo analyses in Drosophila have demonstrated vital roles for both AMPK and LKB1--in part through the myosin regulatory light chain--in cell polarity and cell division. Evidence from mammalian experiments also supports non-metabolic functions for LKB1 and AMPK. This review examines unanticipated AMPK functions for initiating and maintaining cell polarity and completing normal cell division. The ability of AMPK to sense energy status might be coupled with fundamental cell biological functions.  相似文献   

3.
Mirouse V  Billaud M 《FEBS letters》2011,585(7):1016-985
The LKB1 tumor suppressor kinase is an activator of the AMP-activated protein kinase (AMPK), a metabolic gauge that responds to variations of cellular energetic levels by favoring catabolic versus anabolic processes. Recent studies have provided substantial evidence that LKB1 and AMPK control cell polarity from invertebrates to mammals. This review examines how the LKB1–AMPK pathway, in conjunction with other positional signals, converts energy-sensing information into the activation of Myosin II to maintain epithelial-cell architecture but also to complete cell division. This molecular link between polarity and metabolism may constitute an ancient stress-response protective mechanism that was co-opted for tumor suppression during evolution.  相似文献   

4.
T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.  相似文献   

5.
The serine/threonine kinase LKB1 is a master kinase involved in cellular responses such as energy metabolism, cell polarity and cell growth. LKB1 regulates these crucial cellular responses mainly via AMPK/mTOR signaling. Germ-line mutations in LKB1 are associated with the predisposition of the Peutz–Jeghers syndrome in which patients develop gastrointestinal hamartomas and have an enormously increased risk for developing gastrointestinal, breast and gynecological cancers. In addition, somatic inactivation of LKB1 has been associated with sporadic cancers such as lung cancer. The exact mechanisms of LKB1-mediated tumor suppression remain so far unidentified; however, the inability to activate AMPK and the resulting mTOR hyperactivation has been detected in PJS-associated lesions. Therefore, targeting LKB1 in cancer is now mainly focusing on the activation of AMPK and inactivation of mTOR. Preclinical in vitro and in vivo studies show encouraging results regarding these approaches, which have even progressed to the initiation of a few clinical trials. In this review, we describe the functions, regulation and downstream signaling of LKB1, and its role in hereditary and sporadic cancers. In addition, we provide an overview of several AMPK activators, mTOR inhibitors and additional mechanisms to target LKB1 signaling, and describe the effect of these compounds on cancer cells. Overall, we will explain the current strategies attempting to find a way of treating LKB1-associated cancer.  相似文献   

6.
Genes most closely related to adenosine monophosphate (AMP)-activated protein kinase, including SAD kinases and Par-1 regulate cell polarity, although AMP-activated protein kinase (AMPK) modulates cellular energy status. LKB1 (Par-4) is required for normal activation of AMPK in the liver and also regulates cell polarity. AMPK is proposed to inhibit energy consuming activity while initiating energy producing activity during energy limitation. Demonstration that metformin, a common drug for Type 2 diabetes, requires LKB1 for full therapeutic benefit has increased interest in AMPK signaling. Despite the potential importance of AMPK signaling for diabetes, metabolic syndrome and even cancer, the developmental processes regulated by AMPK in genetically mutant animals require further elucidation. Mouse conditional null mutants for AMPK activity will allow genetic elucidation of AMPK function in vivo. This perspective focuses on sequence and structural moieties of AMPK and genetic analysis of AMPK mutations. Interestingly, the predicted protein structure of the carboxy-terminus of AMPKα resembles the carboxy-terminal KA-1 domain of MARK3, a Par-1 orthologue.  相似文献   

7.
LKB1 plays important roles in governing energy homeostasis by regulating AMP-activated protein kinase (AMPK) and other AMPK-related kinases, including the salt-inducible kinases (SIKs). However, the roles and regulation of LKB1 in lipid metabolism are poorly understood. Here we show that Drosophila LKB1 mutants display decreased lipid storage and increased gene expression of brummer, the Drosophila homolog of adipose triglyceride lipase (ATGL). These phenotypes are consistent with those of SIK3 mutants and are rescued by expression of constitutively active SIK3 in the fat body, suggesting that SIK3 is a key downstream kinase of LKB1. Using genetic and biochemical analyses, we identify HDAC4, a class IIa histone deacetylase, as a lipolytic target of the LKB1-SIK3 pathway. Interestingly, we found that the LKB1-SIK3-HDAC4 signaling axis is modulated by dietary conditions. In short-term fasting, the adipokinetic hormone (AKH) pathway, related to the mammalian glucagon pathway, inhibits the kinase activity of LKB1 as shown by decreased SIK3 Thr196 phosphorylation, and consequently induces HDAC4 nuclear localization and brummer gene expression. However, under prolonged fasting conditions, AKH-independent signaling decreases the activity of the LKB1-SIK3 pathway to induce lipolytic responses. We also identify that the Drosophila insulin-like peptides (DILPs) pathway, related to mammalian insulin pathway, regulates SIK3 activity in feeding conditions independently of increasing LKB1 kinase activity. Overall, these data suggest that fasting stimuli specifically control the kinase activity of LKB1 and establish the LKB1-SIK3 pathway as a converging point between feeding and fasting signals to control lipid homeostasis in Drosophila.  相似文献   

8.
9.
The LKB1 serine/threonine kinase is a tumour suppressor responsible for the inherited familial cancer disorder Peutz-Jeghers syndrome and is inactivated in a large percentage of human lung cancers. LKB1 acts a master kinase, directly phosphorylating and activating a family of 14 AMPK (AMP-activated protein kinase)-related kinases which control cell metabolism, cell growth and cell polarity. In this issue of the Biochemical Journal, Hardie and colleagues discover an alternative splice form of LKB1 that alters the C-terminus of the protein containing a few known sites of post-translational regulation. Although widely expressed, the short isoform (LKB1(s)) is the sole splice isoform expressed in testes, and its expression peaks at the time of spermatid maturation. Male mice lacking the LKB1(s) isoform have dramatic defects in spermatozoa, resulting in sterility.  相似文献   

10.
Pancreatic β cells, organized in the islets of Langerhans, sense glucose and secrete appropriate amounts of insulin. We have studied the roles of LKB1, a conserved kinase implicated in the control of cell polarity and energy metabolism, in adult β cells. LKB1-deficient β cells show a dramatic increase in insulin secretion in vivo. Histologically, LKB1-deficient β cells have striking alterations in the localization of the nucleus and cilia relative to blood vessels, suggesting a shift from hepatocyte-like to columnar polarity. Additionally, LKB1 deficiency causes a 65% increase in β cell volume. We show that distinct targets of LKB1 mediate these effects. LKB1 controls β cell size, but not polarity, via the mTOR pathway. Conversely, the precise position of the β cell nucleus, but not cell size, is controlled by the LKB1 target Par1b. Insulin secretion and content are restricted by LKB1, at least in part, via AMPK. These results expose a molecular mechanism, orchestrated by LKB1, for the coordinated maintenance of β cell size, form, and function.  相似文献   

11.
AMP-activated protein kinase (AMPK) is a cellular energy sensor involved in multiple cell signaling pathways that has become an attractive therapeutic target for vascular diseases. It is not clear whether rottlerin, an inhibitor of protein kinase Cδ, activates AMPK in vascular cells and tissues. In the present study, we have examined the effect of rottlerin on AMPK in vascular smooth muscle cells (VSMCs) and isolated rabbit aorta. Rottlerin reduced cellular ATP and activated AMPK in VSMCs and rabbit aorta; however, inhibition of PKCδ by three different methods did not activate AMPK. Both VSMCs and rabbit aorta expressed the upstream AMPK kinase LKB1 protein, and rottlerin-induced AMPK activation was decreased in VSMCs by overexpression of dominant-negative LKB1, suggesting that LKB1 is involved in the upstream regulation of AMPK stimulated by rottlerin. These data suggest for the first time that LKB1 mediates rottlerin-induced activation of AMPK in vascular cells and tissues.  相似文献   

12.
The PAR clan of polarity regulating genes was initially discovered in a genetic screen searching for genes involved in asymmetric cell divisions in the Caenorhabditis elegans embryo. Today, investigations in worms, flies and mammals have established PAR proteins as conserved and fundamental regulators of animal cell polarization in a broad range of biological phenomena requiring cellular asymmetries. The human homologue of invertebrate PAR-4, a serine–threonine kinase LKB1/STK11, has caught attention as a gene behind Peutz–Jeghers polyposis syndrome and as a bona fide tumour suppressor gene commonly mutated in sporadic cancer. LKB1 functions as a master regulator of AMP-activated protein kinase (AMPK) and 12 other kinases referred to as the AMPK-related kinases, including four human homologues of PAR-1. The role of LKB1 as part of the energy sensing LKB1-AMPK module has been intensively studied, whereas the polarity function of LKB1, in the context of homoeostasis or cancer, has gained less attention. Here, we focus on the PAR-4 identity of LKB1, discussing the weight of evidence indicating a role for LKB1 in regulation of cell polarity and epithelial integrity across species and highlight recent investigations providing new insight into the old question: does the PAR-4 identity of LKB1 matter in cancer?  相似文献   

13.
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes.  相似文献   

14.
Adiponectin functions as an insulin sensitizer, and yet the underlying molecular mechanism(s) remains largely unknown. We found that treating C2C12 myotubes with adiponectin or rapamycin enhanced the ability of insulin to stimulate IRS-1 tyrosine phosphorylation and Akt phosphorylation, concurrently with reduced p70 S6 kinase phosphorylation at Thr389 as well as IRS-1 phosphorylation at Ser302 and Ser636/639. Overexpression of dominant-negative AMP kinase (AMPK), but not dominant-negative p38 MAPK, reduced the insulin-sensitizing effect of adiponectin. Rapamycin, but not adiponectin, enhanced insulin-stimulated Akt phosphorylation in HeLa cells, which lack LKB1, and exogenous expression of LKB1 in HeLa cells rescued the insulin-sensitizing effect of adiponectin. Finally, overexpression of wild-type Rheb (Ras homology-enriched in brain) or the TSC2 mutant lacking the AMPK phosphorylation site (TSC2S1345A) inhibited the insulin-sensitizing effect of adiponectin in C2C12 cells. These results indicate that activation of the LKB1/AMPK/TSC1/2 pathway alleviates the p70 S6 kinase-mediated negative regulation of insulin signaling, providing a mechanism by which adiponectin increases insulin sensitivity in cells.  相似文献   

15.
During myocardial ischemia, activation of 5'-AMP-activated protein kinase (AMPK) leads to the stimulation of glycolysis and fatty acid oxidation. Together these metabolic changes contribute to cardiac dysfunction. Although AMPK signaling in the ischemic heart is well characterized, the relative contribution of phosphorylation by AMPK kinase (AMPKK), and positive allosterism by the ratios of AMP:ATP and creatine (Cr):phosphocreatine (PCr), in stimulating AMPK during ischemia are unknown. In hearts subjected to severe ischemia, the ratios of AMP:ATP and Cr:PCr were significantly elevated as compared with aerobic hearts. Severe ischemia stimulated AMPK signaling, as demonstrated by an increase in both AMPK activity and acetyl-CoA carboxylase phosphorylation. Although AMPK phosphorylation was increased by severe ischemia, the protein abundance and activity of the recently identified AMPKK, LKB1, were similar between aerobic and severely ischemic hearts. However, in contrast to LKB1, the activity of AMPKK was stimulated in severely ischemic hearts. To further delineate the relative roles of positive allosterism and AMPKK in the regulation of AMPK during ischemia, hearts were subjected to mild ischemia. Although mild ischemia did not alter the ratios of AMP:ATP and Cr:PCr, mild ischemia increased AMPK activity and increased AMPK phosphorylation. Mild ischemia also stimulated the activity of AMPKK. In summary, we demonstrate that myocardial ischemia stimulates AMPK via an AMPKK other than LKB1. Additionally, we show that changes in high energy phosphates are not essential for the activation of AMPK by ischemia. Our data emphasize the critical role AMPKK plays in mediating AMPK signaling during myocardial ischemia.  相似文献   

16.
The link between cancer and metabolism has been suggested for a long time but further evidence of this hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as a tumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers, a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulated by pharmacological molecules such as metformin in cancer cells. Notably, most of experimental evidence of the anti-tumor activity of AMPK agonists comes from the study of solid tumors such as breast or prostate cancers and only few data are available in hematological malignancies, although recent works emphasized the potential therapeutic value of AMPK agonists in this setting. Further basic research work should be conducted to elucidate the molecular targets of LKB1/AMPK responsible for its anti-tumor activity in parallel of conducting clinical trials using metformin, AICAR or new AMPK activating agents to explore the potential of the LKB1/AMPK signaling pathway as a new target for anticancer drug development.  相似文献   

17.
LKB1 is an upstream activating kinase for the AMP-activated protein kinase (AMPK) and at least 12 other AMPK-related kinases. LKB1 therefore acts as a master kinase regulating the activity of a wide range of downstream kinases, which themselves have diverse physiological roles. Here we identify a second form of LKB1 generated by alternative splicing of the LKB1 gene. The two LKB1 proteins have different C-terminal sequences generating a 50-kDa form (termed LKB1L) and a 48-kDa form (LKB1S). LKB1L is widely expressed in mouse tissues, whereas LKB1S has a restricted tissue distribution with predominant expression in the testis. LKB1S, like LKB1L, forms a complex with MO25 and STRAD, and phosphorylates and activates AMPK both in vitro and in intact cells. A phosphorylation site (serine 431 in mouse) and a farnesylation site (cysteine 433 in mouse) within LKB1L are not conserved in LKB1S raising the possibility that these sites might be involved in differential regulation and/or localization of the two forms of LKB1. However, we show that phosphorylation of serine 431 has no effect on LKB1L activity and that both LKB1L and LKB1S have similar patterns of subcellular localization. These results indicate that the physiological significance of the different forms of LKB1 is not related directly to differences in the C-terminal sequences but may be due to their differential patterns of tissue distribution.  相似文献   

18.
19.
20.
Abstract

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号