首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
3.
Chromosomal replication results in the duplication not only of DNA sequence but also of the patterns of histone modification, DNA methylation, and nucleoprotein structure that constitute epigenetic information. Pericentromeric heterochromatin in human cells is characterized by unique patterns of histone and DNA modification. Here, we describe association of the Mi-2/NuRD complex with specific segments of pericentromeric heterochromatin consisting of Satellite II/III DNA located on human chromosomes 1, 9, and 16 in some but not all cell types. This association is linked in part to DNA replication and chromatin assembly and may suggest a role in these processes. Mi-2/NuRD accumulation is independent of Polycomb association and is characterized by a unique pattern of histone modification. We propose that Mi-2/NuRD constitutes an enzymatic component of a pathway for assembly and maturation of chromatin utilized by rapidly proliferating lymphoid cells for replication of constitutive heterochromatin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Mi-2/NuRD: multiple complexes for many purposes   总被引:11,自引:0,他引:11  
  相似文献   

5.
6.
Mi-2, the central component of the nucleosome remodeling and histone deacetylation (NuRD) complex, is known as an SNF2-type ATP-dependent nucleosome remodeling factor. No morphological mutant phenotype of Drosophila Mi-2 (dMi-2) had been reported previously; however, we found that rare escapers develop into adult flies showing an extra bristle phenotype. The dMi-2 enhanced the phenotype of ac(Hw49c), which is a dominant gain-of-function allele of achaete (ac) and produces extra bristles. Consistent with these observations, the ac-expressing proneural clusters were expanded, and extra sensory organ precursors (SOP) were formed in the dMi-2 mutant wing discs. Immunostaining of polytene chromosomes showed that dMi-2 binds to the ac locus, and dMi-2 and acetylated hisotones distribute on polytene chromosomes in a mutually exclusive manner. The chromatin immunoprecipitation assay of the wing imaginal disc also demonstrated a binding of dMi-2 on the ac locus. These results suggest that the Drosophila Mi-2/NuRD complex functions in neuronal differentiation through the repression of proneural gene expression by chromatin remodeling and histone deacetylation.  相似文献   

7.
8.
9.
PICKLE plays a critical role in repression of genes that regulate development identity in Arabidopsis thaliana. PICKLE codes for a putative ATP-dependent chromatin remodeler that exhibits sequence similarity to members of subfamily II of animal CHD remodelers, which includes remodelers such as CHD3/Mi-2 that also restrict expression of developmental regulators. Whereas animal CHD3 remodelers are a component of the Mi-2/NuRD complex that promotes histone deacetylation, PICKLE promotes trimethylation of histone H3 lysine 27 suggesting that it acts via a distinct epigenetic pathway. Here, we examine whether PICKLE is also a member of a multisubunit complex and characterize the biochemical properties of recombinant PICKLE protein. Phylogenetic analysis indicates that PICKLE-related proteins in plants share a common ancestor with members of subfamily II of animal CHD remodelers. Biochemical characterization of PICKLE in planta, however, reveals that PICKLE primarily exists as a monomer. Recombinant PICKLE protein is an ATPase that is stimulated by ssDNA and mononucleosomes and binds to both naked DNA and mononucleosomes. Furthermore, recombinant PICKLE exhibits ATP-dependent chromatin remodeling activity. These studies demonstrate that subfamily II CHD proteins in plants, such as PICKLE, retain ATP-dependent chromatin remodeling activity but act through a mechanism that does not involve the ubiquitous Mi-2/NuRD complex.  相似文献   

10.
11.
The Mi-2 protein is the central component of the recently isolated NuRD nucleosome remodelling and histone deacetylase complex. Although the NuRD complex has been the subject of extensive biochemical analyses, little is known about its biological function. Here we show that the two C. elegans Mi-2 homologues, LET-418 and CHD-3, play essential roles during development. The two proteins possess both shared and unique functions during vulval cell fate determination, including antagonism of the Ras signalling pathway required for vulval cell fate induction and the proper execution of the 2 degrees cell fate of vulval precursor cells, a process under the control of LIN-12 Notch signalling.  相似文献   

12.
13.
14.
15.
16.
Metastasis-associated protein 3 (MTA3) is a constituent of the Mi-2/nucleosome remodeling and deacetylase (NuRD) protein complex that regulates gene expression by altering chromatin structure and can facilitate cohesin loading onto DNA. The biological function of MTA3 within the NuRD complex is unknown. Herein, we show that MTA3 was expressed highly in granulosa cell nuclei of all ovarian follicle stages and at lower levels in corpora lutea. We tested the hypothesis that MTA3-NuRD complex function is required for granulosa cell proliferation. In the ovary, MTA3 interacted with NuRD proteins CHD4 and HDAC1 and the core cohesin complex protein RAD21. In cultured mouse primary granulosa cells, depletion of endogenous MTA3 using RNA interference slowed cell proliferation; this effect was rescued by coexpression of exogenous MTA3. Slowing of cell proliferation correlated with a significant decrease in cyclin B1 and cyclin B2 expression. Granulosa cell populations lacking MTA3 contained a significantly higher percentage of cells in G2/M phase and a lower percentage in S phase compared with control cells. Furthermore, MTA3 depletion slowed entry into M phase as indicated by reduced phosphorylation of histone H3 at serine 10. These findings provide the first evidence to date that MTA3 interacts with NuRD and cohesin complex proteins in the ovary in vivo and regulates G2/M progression in proliferating granulosa cells.  相似文献   

17.
18.
We have previously described a SWI/SNF-related protein complex (PYR complex) that is restricted to definitive (adult-type) hematopoietic cells and that specifically binds DNA sequences containing long stretches of pyrimidines. Deletion of an intergenic DNA-binding site for this complex from a human beta-globin locus construct results in delayed human gamma- to beta-globin switching in transgenic mice, suggesting that the PYR complex acts to facilitate the switch. We now show that PYR complex DNA-binding activity also copurifies with subunits of a second type of chromatin-remodeling complex, nucleosome-remodeling deacetylase (NuRD), that has been shown to have both nucleosome-remodeling and histone deacetylase activities. Gel supershift assays using antibodies to the ATPase-helicase subunit of the NuRD complex, Mi-2 (CHD4), confirm that Mi-2 is a component of the PYR complex. In addition, we show that the hematopoietic cell-restricted zinc finger protein Ikaros copurifies with PYR complex DNA-binding activity and that antibodies to Ikaros also supershift the complex. We also show that NuRD and SWI/SNF components coimmunopurify with each other as well as with Ikaros. Competition gel shift experiments using partially purified PYR complex and recombinant Ikaros protein indicate that Ikaros functions as a DNA-binding subunit of the PYR complex. Our results suggest that Ikaros targets two types of chromatin-remodeling factors-activators (SWI/SNF) and repressors (NuRD)-in a single complex (PYR complex) to the beta-globin locus in adult erythroid cells. At the time of the switch from fetal to adult globin production, the PYR complex is assembled and may function to repress gamma-globin gene expression and facilitate gamma- to beta-globin switching.  相似文献   

19.
The Mi-2/NuRD complex is a multi-subunit protein complex with enzymatic activities involving chromatin remodeling and histone deacetylation. Targeting of Mi-2/NuRD to methylated CpG sequences mediates gene repression. The function of p66α and of p66β within the multiple subunits has not been addressed. Here, we analyzed the in vivo function and binding of both p66-paralogs. Both factors function in synergy, since knocking-down p66α affects the repressive function of p66β and vice versa. Both proteins interact with MBD2 functionally and biochemically. Mutation of a single amino acid of p66α abolishes in vivo binding to MBD2 and interferes with MBD2-mediated repression. This loss of binding results in a diffuse nuclear localization in contrast to wild-type p66α that shows a speckled nuclear distribution. Furthermore, wild-type subnuclear distribution of p66α and p66β depends on the presence of MBD2. Both proteins interact with the tails of all octamer histones in vitro, and acetylation of histone tails interferes with p66 binding. The conserved region 2 of p66α is required for histone tail interaction as well as for wild-type subnuclear distribution. These results suggest a two-interaction forward feedback binding mode, with a stable chromatin association only after deacetylation of the histones has occurred.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号