首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
Successful viral replication entails elimination or bypass of host antiviral mechanisms. Here, we show that shRNA-mediated knockdown of murine double minute (Mdm2) and its paralog Mdm4 enhanced the expression of early and late viral gene products during adenovirus (HAdV) infection. Remarkably, whereas the expression of HAdV genes was low in p53-deficient mouse embryonic fibroblasts (p53KO MEFs), the HAdV early gene products were efficiently expressed in Mdm2/p53 double-knockout (DKO) and Mdm4/p53 DKO MEFs, and viral capsid proteins were produced in Mdm2/p53 DKO MEFs. Thus, Mdm2 and Mdm4 seem to have potent antiviral property. In cells infected with wt HAdV or a mutant virus lacking the E1B-55K gene (dl1520), both Mdm2 and Mdm4 were rapidly depleted, whereas replication-deficient mutant viruses (Ad-GFP) or ΔpTP with deletions within the coding sequence of preterminal binding protein failed to induce their downregulation. Reduced expression of Mdm2 and Mdm4 was not due to general shutoff of host protein synthesis. Additionally, expression of a dominant-negative mutant of Cul5 did not affect Mdm2/Mdm4 downregulation. Thus, viral replication but not the presence of E1B-55K is required for Mdm2/Mdm4 degradation. Surprisingly, treatment of HAdV-infected cells with proteasome inhibitor MG132 only partially restored the protein levels of Mdm2 and Mdm4, suggesting that they may also be downregulated through an additional mechanism independent of proteasome. Interestingly, cyclin D1 and p21 appear to be downregulated similarly during HAdV infection. Collectively, our work provides the first biochemical evidence for antiviral function of Mdm2 and Mdm4 and that viruses employ efficient countermeasure to ensure viral replication.Key words: adenovirus (HAdV), antiviral mechanism, virus-host interaction, Mdm2, Mdm4, mouse embryonic fibroblast (MEF), DNA-damage response, cell cycle, p21, cyclin D1  相似文献   

2.
Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21Cip1 and p27Kip1. Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.  相似文献   

3.
Mdm2 and Mdm4 loss regulates distinct p53 activities   总被引:1,自引:0,他引:1  
Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2(-/-) and Mdm4(-/-) embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53(-/-) mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities.  相似文献   

4.
5.
6.
Mdm2 is a nuclear phosphoprotein which functions as a negative feedback regulator of the p53 tumor suppressor gene. In this study, we investigated the alteration of Mdm2 and p53 in three human cancer cell lines containing either a wild-type or mutant p53 gene after treatment with Adriamycin (doxorubicin, ADR), a DNA damaging agent. We found that human breast cancer MCF-7 cells containing wild-type p53 were much more susceptible to ADR compared to human breast cancer MDA-MB-231 and human prostate cancer Du-145 cells which contain mutant p53. ADR resulted in a significant dose-dependent accumulation of p53 protein in MCF-7 cells, whereas little or no influence was observed on p53 protein of the two mutant p53 cell lines. However, a significant down-regulation of Mdm2 at protein and mRNA levels was observed in these three cell lines following ADR treatment. Moreover, the decrease of Mdm2 was in both a dose- and time-dependent manner. It is interestingly noted that 5 μM is a critical dose for significant down-regulation of the Mdm2 protein. Selected proteasome inhibitors did not rescue the ADR-caused decline in the expression of Mdm2 protein. Therefore, our present results reveal that ADR can induce a down-regulation of Mdm2 via a p53-independent pathway in human cancer cells and the ubiquitin-proteasome degradation mechanism may not be involved in the decreased expression of Mdm2 protein.  相似文献   

7.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

8.
Mdm2 promotes ubiquitination of the tumor suppressor p53 and can function as an oncogene by largely downregulating p53. Although a p53-independent role of Mdm2 has been reported, the underlying mechanism remains unclear. In the present study, we indicated that Mdm2 is involved in p53-independent carcinogenesis via downregulation of pRB. Expression of pRB showed an apparent inverse correlation with Mdm2 expression in 30 patients with non-small cell lung cancer. There were some cases with the p53 mutations in which a high level of Mdm2 and a low level of pRB were expressed. Mdm2 promoted ubiquitination of pRB in cells without wild-type p53. Furthermore, pRB-mediated G1 arrest in a p53-deficient cell line, SRB1, was significantly enhanced by a mutant Mdm2 that lacks pRB ubiquitination activity. Soft-agar colony formation activity of p53-knockout MEF was increased by wild-type Mdm2 but not mutant Mdm2. These findings suggest that overexpression of Mdm2 can perturb a RB pathway regardless of the p53 gene status, promoting carcinogenesis.  相似文献   

9.
10.
11.
12.
Identification of Mdm2 and JNK as proteins that target degradation of wt p53 prompted us to examine their effect on mutant p53, which exhibits a prolonged half-life. Of five mutant p53 forms studied for association with the targeting molecules, two no longer bound to Mdm2 and JNK. Three mutant forms, which exhibit high expression levels, showed lower affinity for association with Mdm2 and JNK in concordance with greater affinity to p14(ARF), which is among the stabilizing p53 molecules. Monitoring mutant p53 stability in vitro confirmed that, while certain forms of mutant p53 are no longer affected by either JNK or Mdm2, others are targeted for degradation by JNK/Mdm2, albeit at lower efficiency when compared with wt p53. Expression of wt p53 in tumor cells revealed a short half-life, suggesting that the targeting molecules are functional. Forced expression of mutant p53 in p53 null cells confirmed pattern of association with JNK/Mdm2 and prolonged half-life, as found in the tumor cells. Over-expression of Mdm2 in either tumor (which do express endogenous functional Mdm2) or in p53 null cells decreased the stability of mutant p53 suggesting that, despite its expression, Mdm2/JNK are insufficient (amount/affinity) for targeting mutant p53 degradation. Based on both in vitro and in vivo analyses, we conclude that the prolonged half-life of mutant p53 depends on the nature of the mutation, which either alters association with targeting molecules, ratio between p53 and targeting/stabilizing molecules or targeting efficiency.  相似文献   

13.
The p53 pathway is pivotal in tumor suppression. Cellular p53 activity is subject to tight regulation, in which the two related proteins Mdm2 and Mdm4 have major roles. The delicate interplay between the levels of Mdm2, Mdm4 and p53 is crucial for maintaining proper cellular homeostasis. microRNAs (miRNAs) are short non-coding RNAs that downregulate the level and translatability of specific target mRNAs. We report that miR-661, a primate-specific miRNA, can target both Mdm2 and Mdm4 mRNA in a cell type-dependent manner. miR-661 interacts with Mdm2 and Mdm4 RNA within living cells. The inhibitory effect of miR-661 is more prevalent on Mdm2 than on Mdm4. Interestingly, the predicted miR-661 targets in both mRNAs reside mainly within Alu elements, suggesting a primate-specific mechanism for regulatory diversification during evolution. Downregulation of Mdm2 and Mdm4 by miR-661 augments p53 activity and inhibits cell cycle progression in p53-proficient cells. Correspondingly, low miR-661 expression correlates with bad outcome in breast cancers that typically express wild-type p53. In contrast, the miR-661 locus tends to be amplified in tumors harboring p53 mutations, and miR-661 promotes migration of cells derived from such tumors. Thus, miR-661 may either suppress or promote cancer aggressiveness, depending on p53 status.  相似文献   

14.
We report here the characterization of a mutant mouse line with a specific gene trap event in the Mdm4 locus. Absence of Mdm4 expression results in embryonic lethality (10.5 days postcoitum [dpc]), which was rescued by transferring the Mdm4 mutation into a Trp53-null background. Mutant embryos were characterized by overall growth deficiency, anemia, improper neural tube closure, and dilation of lateral ventricles. In situ analysis demonstrated increased levels of p21(CIP1/Waf1) and lower levels of Cyclin E and proliferating cell nuclear antigen expression. Consistent with lack of 5-bromo-2'-deoxyuridine incorporation, these data suggest a block of mutant embryo cells in the G(1) phase of the cell cycle. Accordingly, Mdm4-deficient mouse embryonic fibroblasts manifested a greatly reduced proliferative capacity in culture. Moreover, extensive p53-dependent cell death was specifically detected in the developing central nervous system of the Mdm4 mutant embryos. These findings unambiguously assign a critical role for Mdm4 as a negative regulator of p53 and suggest that Mdm4 could contribute to neoplasias retaining wild-type Trp53. Finally, we provide evidence indicating that Mdm4 plays no role on cell proliferation or cell cycle control that is distinct from its ability to modulate p53 function.  相似文献   

15.
16.
The tumor suppressor p53 is inactivated by multiple mechanisms that include mutations of the p53 gene itself and increased levels of the p53 inhibitors MDM2 and MDM4. Mice lacking Mdm2 or Mdm4 exhibit embryo-lethal phenotypes that are completely rescued by concomitant deletion of p53. Here we show that Mdm2 and Mdm4 haploinsufficiency leads to increased p53 activity, exhibited as increased sensitivity to DNA damage and decreased transformation potential. Moreover, in in vivo tumor development, Emu-myc Mdm4+/- mice show a delayed onset of B-cell lymphomas compared to Emu-myc mice. Additionally, Mdm2+/- Mdm4+/- double-heterozygous mice are not viable and exhibit defects in hematopoiesis and cerebellar development. The defects in Mdm2+/- Mdm4+/- mice are corrected by deletion of a single p53 allele. These findings highlight the exquisite sensitivity of p53 to Mdm2 and Mdm4 levels and suggest that some cell types may be more sensitive to therapeutic drugs that inhibit the Mdm-p53 interaction.  相似文献   

17.
18.
Inhibition of p53 degradation by Mdm2 acetylation   总被引:5,自引:0,他引:5  
Wang X  Taplick J  Geva N  Oren M 《FEBS letters》2004,561(1-3):195-201
  相似文献   

19.
The Mdm2 oncoprotein mediates p53 degradation at cytoplasmic proteasomes and is the principal regulator for maintaining low, often undetectable levels of p53 in unstressed cells. However, a subset of human tumors including neuroblastoma constitutively harbor high levels of wild type p53 protein localized to the cytoplasm. Here we show that the abnormal p53 accumulation in such cells is due to a profound resistance to Mdm2-mediated degradation. Overexpression of Mdm2 in neuroblastoma (NB)(1) cell lines failed to decrease the high steady state levels of endogenous p53. Moreover, exogenous p53, when introduced into these cells, was also resistant to Mdm2-directed degradation. This resistance is not due to a lack of Mdm2 expression in NB cells or a lack of p53-Mdm2 interaction, nor is it due to a deficiency in the ubiquitination state of p53 or proteasome dysfunction. Instead, Mdm2-resistant p53 from NB cells is associated with covalent modification of p53 and masking of the modification-sensitive PAb 421 epitope. This system provides evidence for an important level of regulation of Mdm2-directed p53 destruction in vivo that is linked to p53 modification.  相似文献   

20.
The Mdm2 oncoprotein is an E3 ubiquitin ligase required to maintain the p53 protein at low levels in embryonic and adult tissues. It also contributes to tumor formation by antagonizing p53 tumor suppressor activity when amplified and/or overexpressed. Importantly, p53-independent role for Mdm2 has been suggested by transfection studies. Among the growing list of putative Mdm2-regulated proteins are several proteins playing a key role in the control of cell proliferation such as pRb, E2F1/DP1, Numb, Smads, Lats2 or IGF-1R. Consistent with the ability of Mdm2 to promote ubiquitylation and proteasome destruction of IGFR-I independently of p53, we show herein that loss of Mdm2 leads to a significant increase in IGF1-R-β protein levels both in cells lacking or expressing p53. Interestingly, IGF-1 protects cells from DNA-damage-induced apoptosis only in absence of Mdm2. These data therefore further highlight a physiological role for Mdm2 in the control of IGF1 signalling and provide genetic evidence for a p53-independent proapoptotic function of Mdm2. The consequences of these findings for the development of p53-Mdm2-targeted anti-cancer therapies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号