首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
2.
3.
The entire genome of the unicellular cyanobacterium Synechococcus elongatus PCC 6301 (formerly Anacystis nidulans Berkeley strain 6301) was sequenced. The genome consisted of a circular chromosome 2,696,255 bp long. A total of 2,525 potential protein-coding genes, two sets of rRNA genes, 45 tRNA genes representing 42 tRNA species, and several genes for small stable RNAs were assigned to the chromosome by similarity searches and computer predictions. The translated products of 56% of the potential protein-coding genes showed sequence similarities to experimentally identified and predicted proteins of known function, and the products of 35% of the genes showed sequence similarities to the translated products of hypothetical genes. The remaining 9% of genes lacked significant similarities to genes for predicted proteins in the public DNA databases. Some 139 genes coding for photosynthesis-related components were identified. Thirty-seven genes for two-component signal transduction systems were also identified. This is the smallest number of such genes identified in cyanobacteria, except for marine cyanobacteria, suggesting that only simple signal transduction systems are found in this strain. The gene arrangement and nucleotide sequence of Synechococcus elongatus PCC 6301 were nearly identical to those of a closely related strain Synechococcus elongatus PCC 7942, except for the presence of a 188.6 kb inversion. The sequences as well as the gene information shown in this paper are available in the Web database, CYORF (http://www.cyano.genome.jp/).  相似文献   

4.
Redox potentials of algal and cyanobacterial flavodoxins.   总被引:2,自引:1,他引:1       下载免费PDF全文
The redox potentials of flavodoxins from the cyanobacteria Synechococcus PCC 6301 (formerly Anacystis nidulans) and Nostoc strain MAC, and from the red alga Chondrus crispus, were determined by potentiometric titration. For the oxidized-semiquinone interconversion the potentials at pH 7.0 of the three flavodoxins were between -210 and -235 mV, and these were pH-dependent over the range pH 6.9-8.2. For the semiquinone-reduced interconversion the potentials of the cyanobacterial flavodoxins were close to -414 mV, and that for the algal flavodoxin, -370 mV, is the highest reported in this group of flavoproteins.  相似文献   

5.
The cyanobacteria Synechococcus sp. strain PCC 7942 and Synechococcus sp. strain PCC 6301 are very closely related and both have been designated by the binomial Anacystis nidulans. The only established difference between the two strains is the superior transformation properties of strain PCC 7942. Significant homology between the rRNA genes of these strains was demonstrated by the ability of an rRNA operon from strain PCC 6301, interrupted by a spectinomycin and streptomycin resistance marker, to transform strain PCC 7942 by recombining with and replacing an endogenous rRNA operon. Restriction fragment length polymorphism data indicated that the chromosomes of the two strains were conserved around the three psbA loci, the two rRNA operons, and the psbDI locus. However, multiple polymorphisms were detected downstream of the psbDII locus, identifying a DNA rearrangement such as an inversion, insertion, or deletion within the chromosome. Analysis of genome structure by pulsed-field gel electrophoresis of large NotI restriction fragments showed only two bands that were visibly shifted between the chromosomes of the two strains. These data support their very close genetic relationship and the feasibility of studying genes derived from strain PCC 6301 in the highly transformable PCC 7942 strain.  相似文献   

6.
A Vioque 《Nucleic acids research》1992,20(23):6331-6337
The genes encoding the RNA subunit of ribonuclease P from the unicellular cyanobacterium Synechocystis sp. PCC 6803, and from the heterocyst-forming strains Anabaena sp. PCC 7120 and Calothrix sp. PCC 7601 were cloned using the homologous gene from Anacystis nidulans (Synechococcus sp. PCC 6301) as a probe. The genes and the flanking regions were sequenced. The genes from Anabaena and Calothrix are flanked at their 3'-ends by short tandemly repeated repetitive (STRR) sequences. In addition, two other sets of STRR sequences were detected within the transcribed regions of the Anabaena and Calothrix genes, increasing the length of a variable secondary structure element present in many RNA subunits of ribonuclease P from eubacteria. The ends of the mature RNAs were determined by primer extension and RNase protection. The predicted secondary structure of the three RNAs studied is similar to that of Anacystis and although some idiosyncrasies are observed, fits well with the eubacterial consensus.  相似文献   

7.
8.
9.
Resonance Raman spectra of native C-phycocyanin, allophycocyanin and whole, intact phycobilisomes from the blue-green alga Anacystis nidulans (Synechococcus 6301) are reported. A tentative assignment for the more prominent resonance Raman bands is suggested. The possibly sensitive regions for inter-chromophore interactions in the case of phycobilisomes are also discussed.  相似文献   

10.
The two closely related fresh water cyanobacteria Synechococcus elongatus PCC 6301 and Synechococcus elongatus PCC 7942 have previously been shown to constitutively express a FAD-containing L-amino acid oxidase with high specificity for basic L-amino acids (L-arginine being the best substrate). In this paper we show that such an enzyme is also present in the fresh water cyanobacterium Synechococcus cedrorum PCC 6908. In addition, an improved evaluation of the nucleotide/amino acid sequence of the L-amino acid oxidase of Synechococcus elongatus PCC 6301 (encoded by the aoxA gene) with respect to the FAD-binding site and a translocation pathway signal sequence will be given. Moreover, the genome sequences of 24 cyanobacteria will be evaluated for the occurrence of an aoxA-similar gene. In the evaluated cyanobacteria 15 genes encoding an L-amino acid oxidase-similar protein will be found.  相似文献   

11.
A procedure is described for the preparation of stable phycobilisomes from the unicellular cyanobacterium Synechococcus sp. 6301 (also known as Anacystis nidulans). Excitation of the phycocyanin in these particles at 580 nm leads to maximum fluorescence emission, from allophycocyanin and allophycocyanin B, at 673 nm. Electron microscopy shows that the phycobilisomes are clusters of rods. The rods are made up of stacks of discs which exhibit the dimensions of short stacks made up primarily of phycocyanin (Eiserling, F. A., and Glazer, A. N. (1974) J. Ultrastruct. Res. 47, 16-25). Loss of the clusters, by dissociation into rods under suitable conditions, is associated with loss of energy transfer as shown by a shift in fluorescence emission maximum to 652 nm. Synechococcus sp. 6301 phycobilisomes were shown to contain five nonpigmented polypeptides in addition to the colored subunits (which carry the covalently bound tetrapyrrole prosthetic groups) of the phycobiliproteins. Evidence is presented to demonstrate that these colorless polypeptides are genuine components of the phycobilisome. The nonpigmented polypeptides represent approximately 12% of the protein of the phycobilisomes; phycocyanin, approximately 75%, and allophycocyanin, approximately 12%. Spectroscopic studies that phycocyanin is in the hexamer form, (alpha beta)6, in intact phycobilisomes, and that the circular dichroism and absorbance of this aggregate are little affected by incorporation into the phycobilisome structure.  相似文献   

12.
13.
Structural and chemical properties of a flavodoxin from Anabaena PCC 7119   总被引:1,自引:0,他引:1  
Structural and chemical properties of a flavodoxin from Anabaena PCC 7119 are described. The first 36 residues of the amino-terminal amino acid sequence have been determined and show extensive homology with flavodoxins isolated from other sources. Anabaena flavodoxin exhibits a net negative change (-3) in the helix-1 segment as found with other cyanobacterial flavodoxins Synechococcus 6301 (Anacystis nidulans) and Nostoc MAC, but in contrast to the net positive charge found in this region in the case of flavodoxins isolated from nitrogen-fixing bacteria (Azotobacter and Klebsiella). The FMN cofactor can be reversibly resolved from the apoprotein by trichloroacetic acid treatment. Apoflavodoxin, thus prepared, binds FMN with a Kd value of 0.1 nM and binds riboflavin with a decreased affinity (Kd = 5 microM) at pH 7.2. The apoprotein is stable in dilute solutions at pH values around 7 but readily denatures at pH 8 as judged from loss in flavin-binding ability and by ultraviolet circular dichroism spectroscopy. Oxidation-reduction potential studies at pH values of 7 and 8 show OX/SQ couples of -195 mV and -255 mV, respectively, and show SQ/HQ couples of -390 mV and -418 mV, respectively. From these data, the binding constant for the FMN semiquinone is calculated to be approx. 5-fold tighter and the binding of the FMN hydroquinone is approx. 10(5)-fold weaker than that of the oxidized FMN to the apoprotein. Anabaena flavodoxin functions as an effective mediator of electron transfer from ferredoxin-NADP(+)-reductase to cytochrome c with a turnover number [4.5-5) x 10(3) min-1); a values similar to that determined for Anabaena ferredoxin. The flavodoxin binds tightly to the reductase with Kd values of 6.4 and 8.5 microM at pH values of 7.0 and 8.0, respectively.  相似文献   

14.
The gene for the small subunit (SS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from a cyanobacterium, Anacystis nidulans 6301, has been cloned and subjected to sequence analysis. The SS coding region is located close to and downstream from the large subunit (LS) coding region on the same DNA strand. The spacer region between the LS and the SS coding regions contains 93 base pairs (bp), and has no promoter-like sequences. The coding region of A. nidulans SS gene contains 333 bp (111 codons). The deduced amino acid sequence of the A. nidulans SS protein shows 40% homology with those of higher plants.  相似文献   

15.
A 329 bp DNA segment from both Anabaena variabilis and Anabaena PCC 7119 was amplified using the polymerase chain reaction (PCR). The sequences from the two cyanobacteria showed strong similarities to the corresponding part of the nifJ gene from Klebsiella pneumoniae and Enterobacter agglomerans. The present findings underline earlier results of enzymatic studies that heterocystous cyanobacteria possess a pyruvate: ferredoxin (flavodoxin) oxidoreductase (PFO). The nifJ gene segment could not be detected in the non-dinitrogenfixing, unicellular cyanobacterium Anacystis nidulans which is also in accord with previous findings from enzyme assays.  相似文献   

16.
A carotenoid-containing membrane fraction devoid of chlorophyll and phycobiliproteins was isolated from three unicellular cyanobacteria, Synechococcus sp., Synechococcus leopoliensis UTEX 625, and Anacystis nidulans R-2, by aqueous-phase separation, hydrophobic chromatography, and differential centrifugation. The presence of 2-keto-3-deoxyoctonate, muramic acid, and diaminopimelic acid suggests that the preparation is highly enriched in cell wall. Electron micrographs of thin sections of this material showed C-shaped membrane profiles similar to those seen in other gram-negative cell wall preparations. The inactivation of cyanophage AS-1 by this fraction confirmed its identity as cell wall. The cell wall contained approximately equal weights of total carbohydrate and protein. Absorption maxima at 434, 452, and 488 nm indicated the presence of carotenoids. These were in the outer membrane and were not due to contaminating cytoplasmic or thylakoid membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparations showed a broad band of approximately 50,000 molecular weight which contained 35% of the total outer membrane protein. This band was resolved into at least two components running at approximately 50,000 and 52,000 molecular weight. The smaller of these polypeptides was a glycoprotein. The polypeptide components were unaffected by protease or detergent treatment in either whole cells or isolated cell wall preparations, indicating that the polypeptide components were not exposed to the surface or easily removed from the hydrophobic environment.  相似文献   

17.
18.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

19.
Antisera prepared against intact, viable cells were used to show the applicability of a serological approach to detect relationships between unicellular cyanobacteria. Antisera were raised against eight unicellular cyanobacteria and two chlorophycean unicellular organisms. The staining reactivity of each antiserum was tested by the fixed indirect immunofluorescence assay against the different organisms, and each organism was tested for its reactivity with all of the different antisera. Absorption of antisera with the appropriate heterologous antigens was used to further characterize the relationship betweenAnacystis nidulans andSynechococcus cedrorum, and also the relationship between two subcultures of an isolate distinguished by morphological features. Absorption of antiserum was also used for the removal of antibodies to contaminating bacteria. The approaches used are suggested as a useful tool for determining relationships between unicellular cyanobacteria.  相似文献   

20.
In the cyanobacterium Anacystis nidulans (Synechococcus PCC6301), ribulose 1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase) is composed of eight large subunits and eight small subunits. There are three regions of the small subunit that contain amino acids that are conserved throughout evolution, from bacteria to higher plants. Since the function of the small subunit is not fully understood, site-directed mutagenesis was performed on highly conserved residues in the first and second conserved regions. Ser-16, Pro-19, Leu-21, and Tyr-54 were replaced by Asp-16, His-19, Glu-21, and Ser-54, respectively. Crude extracts containing the recombinant His-19 mutant enzyme indicated that there was little effect on either Rbu-P2 carboxylase activity or interactions between large and small subunits. However, the Asp-16, Glu-21, and Ser-54 mutations showed effects on Rbu-P2 carboxylase activity and the interaction between large and small subunits. The large and small subunits of the Asp-16, Glu-21, and Ser-54 enzymes were found to dissociate during nondenaturing gel electrophoresis or sucrose density gradient centrifugation. However, the dissociated small subunits remained functional and were capable of reconstituting Rbu-P2 carboxylase activity when added to large subunits. These results indicated that Ser-16, Leu-21, and Tyr-54 might play an important role in interactions between large and small subunits of the A. nidulans enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号