首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The complete nucleotide sequence of poliovirus RNA has a long open reading frame capable of encoding the precursor polyprotein NCVP00. The first AUG codon in this reading frame is located 743 nucleotides from the 5' end of the RNA and is preceded by eight AUG codons in all three reading frames. Because all proteins that map at the amino terminus of the polyprotein (P1-1a, VP0, and VP4) are blocked at their amino termini and previous studies of ribosome binding have been inconclusive, direct identification of the initiation site of protein synthesis was difficult. We separated and identified all of the tryptic peptides of capsid protein VP4 and correlated these peptides with the amino acid sequence predicted to follow the AUG codon at nucleotide 743. Our data indicate that VP4 begins with a blocked glycine that is encoded immediately after the AUG codon at nucleotide 743. An S1 nuclease analysis of poliovirus mRNA failed to reveal a splice in the 5' region. We concluded that synthesis of the poliovirus polyprotein is initiated at nucleotide 743, the first AUG codon in the long open reading frame.  相似文献   

2.
赵新泰  李载平 《遗传学报》1993,20(3):279-284
本试验测定了已克隆的貂肠炎病毒(MEV)复制型(RF)DNA的核苷酸序列,确定MEV基因组全长约为5064个核苷酸(nucleotides,nt),推测了3'端和5'端结构,在5'端非编码区有3个51 nt的重复。MEV基因组序列与犬细小病毒(CPV)、猫细小病毒(FPV)有很高的同源性,结构基因区的同源性分别达99.1%和99.9%,但在5'端非编码区有较大差异。MEV基因组结构与CPV和FPV基本一致,有两个大的开放阅读框架,分别编码688和722个氨基酸。在map unit(m.u.)3.7和m.u.39处有两个启动子,在m.u.97处有poly A位点。NS2、VP1和VP2的mRNA都发生剪接。  相似文献   

3.
Analysis of extracts of H-1 parvovirus-infected cells with virus-specific antiserum led to the identification of two forms of the noncapsid virus protein NCVP1. These two proteins had apparent molecular weights of 84,000 (NCVP1) and 92,000 (NCVP1') and were structurally related, based on their immunological reactivity and on peptide map analysis. Both of these proteins appeared early in the virus infection, about the same time that capsid proteins appeared. NCVP1' was a highly phosphorylated protein which was apparently derived from NCVP1 via a post-translational event. Phosphoserine was the predominant phosphorylated amino acid in NCVP1' and appeared to be localized in one site or a few sites on the protein. The possible involvement of these noncapsid proteins in parvovirus DNA replication is discussed.  相似文献   

4.
Nucleotide sequence and genome organization of canine parvovirus.   总被引:30,自引:13,他引:17       下载免费PDF全文
The genome of a canine parvovirus isolate strain (CPV-N) was cloned, and the DNA sequence was determined. The entire genome, including ends, was 5,323 nucleotides in length. The terminal repeat at the 3' end of the genome shared similar structural characteristics but limited homology with the rodent parvoviruses. The 5' terminal repeat was not detected in any of the clones. Instead, a region of DNA starting near the capsid gene stop codon and extending 248 base pairs into the coding region had been duplicated and inserted 75 base pairs downstream from the poly(A) addition site. Consensus sequences for the 5' donor and 3' acceptor sites as well as promotors and poly(A) addition sites were identified and compared with the available information on related parvoviruses. The genomic organization of CPV-N is similar to that of feline parvovirus (FPV) in that there are two major open reading frames (668 and 722 amino acids) in the plus strand (mRNA polarity). Both coding domains are in the same frame, and no significant open reading frames were apparent in any of the other frames of both minus and plus DNA strands. The nucleotide and amino acid homologies of the capsid genes between CPV-N and FPV were 98 and 99%, respectively. In contrast, the nucleotide and amino acid homologies of the capsid genes for CPV-N and CPV-b (S. Rhode III, J. Virol. 54:630-633, 1985) were 95 and 98%, respectively. These results indicate that very few nucleotide or amino acid changes differentiate the antigenic and host range specificity of FPV and CPV.  相似文献   

5.
cDNA clones representing the entire genome of human rhinovirus 2 have been obtained and used to determine the complete nucleotide sequence. The genome consists of 7102 nucleotides and possesses a long open reading frame of 6450 nucleotides; this reading frame is initiated 611 nucleotides from the 5' end and stops 42 nucleotides from the polyA tract. The N-terminal sequences of three of the viral capsid proteins have been elucidated, thus defining the positions of three cleavage sites on the polyprotein. The extensive amino acid sequence homology with poliovirus and human rhinovirus 14 enabled the other cleavage sites to be predicted. Cleavages in the 3' half of the molecule appear to take place predominantly at Gln-Gly pairs, whereas those in the 5' half (including the capsid proteins) are more heterogeneous.  相似文献   

6.
We have studied the effect of the drug pactamycin on protein synthesis in poliovirus-infected HeLa cells. At a concentration which primarily inhibits initiation of protein synthesis, the spectrum of poliovirus proteins synthesized is markedly changed. The amount of NCVP 1, the capsid precursor, is greatly reduced relative to NCVP 2 and the amount of NCVP X is slightly reduced. Since it is believed that there is only one major site for the initiation of protein synthesis on the poliovirus genome, we interpret this differential effect on the poliovirus proteins to be an indication of their relative distance from the initiation site. On this basis, we propose a gene order for the poliovirus genome (5' --> 3') of NCVP 1, NCVP X, NCVP 2.  相似文献   

7.
S L Rhode  rd 《Journal of virology》1985,55(3):886-889
  相似文献   

8.
P Deininger  A Esty  P LaPorte  T Friedmann 《Cell》1979,18(3):771-779
The nucleotide sequence of the late region of the polyoma genome has been determined. It consists of 2366 bp and encodes the virion capsid proteins VP1, VP2 and VP3. Extensive open reading frames identify the possible coding sequences of VP2 and VP3 toward the 5′ end of the late region, and of the major capsid protein VP1 toward the 3′ end of the late region. The 5′ end of the sequence encoding VP1 overlaps the 3′ VP2/VP3 region by 29 nucleotides and is in a different reading frame. The predicted amino acid sequences for all three known capsid proteins show extensive homology with the analogous capsid proteins of SV40 throughout most of their length. The VP2/VP3 amino acid homology between the two viruses is 34%, while the major capsid protein VP1 is much more highly conserved, showing 54% homology. These homologies together with the extent of open reading frames help to define the extent of the coding sequences. The VP2 initiator begins at position 269 and the coding region extends to the first termination codon beginning at 1226. The predicted size of VP2 is 35,007 daltons. A probable VP3 initiator is within the VP2 coding sequence at position 614 and is in the same frame as VP2. This coding sequence can also utilize the terminator at position 1226, and the predicted size of the VP3 translation product is 22,979 daltons. The VP1 coding region begins at position 1197 and continues in a frame different from that of VP2/ VP3 to a termination point at 2349. The molecular weight of VP1 is predicted to be 42,834 daltons. The 5′ untranslated region contains sequences that resemble a potential ribosomal binding site and a possible mRNA capping sequence similar to those found in other eucaryotic systems. There is also a sequence (5′-TCAAGTAAGTGA-3′) almost identical to one found in two regions containing potential splice sites in the early region of polyoma. The 5′ untranslated region does not show the extensive repeated sequences found in the similar region of SV40. The 3′ untranslated region contains the sequence 5′-AATAAA-3′, thought to represent a polyadenylation signal. As in the early region of polyoma, the extensive nucleotide and deduced amino acid homology with SV40 indicate a close evolutionary relationship between the two viruses, and help to identify regions of common and important structure-function relationships.  相似文献   

9.
The nucleotide sequence of part of the late region of the polyoma virus genome was determined. It contains coding information for the major capsid protein VP1 and the C-terminal region of the minor proteins VP2 and VP3. In the sequence with the same polarity as late mRNA's, all coding frames are blocked by termination codons in a region around 48 units on the physical map. This is the region where the N-terminus of VP1 and the C-termini of VP2 and VP3 have been located (T. Hunter and W. Gibson, J. Virol. 28:240-253, 1978; S. G. Siddell and A. E. Smith, J. Virol. 27:427-431, 1978; Smith et al., Cell 9:481-487, 1976). There are two long uninterrupted coding frames in the late region of polyoma virus DNA. One lies at the 5' end of the sequence and contains potential coding sequences for VP2 and VP3. The other contains 383 consecutive sense codons starting with the ATG at nucleotide position 1,218, extends from 47.5 to 25.8 units counterclockwise on the physical map, and is located where the VP1 gene has been mapped. The VP1 gene overlaps the genes for proteins VP2/VP3 by 32 nucleotides and uses a different coding frame. From the DNA sequence, the amino acid sequence of VP1 was predicted. The proposed VP1 sequence is in good agreement with other data, namely, with the partial N-terminal amino acid sequence and the total amino acid composition. The VP1 coding frame terminates with a TAA codon at 25.8 map units. This is followed by an AATAAA sequence, which may act as a processing signal for the viral late mRNA's. When both nucleotide and amino acid sequences are compared with their counterparts in the related simian virus 40, extensive homologies are found over the entire region of the two viral genomes. Maximum homology appears to occur in those regions which code for the C-termini of the VP1 proteins. The overlap region of VP1 with VP2/VP3 of polyoma virus is shorter by 90 nucleotides than is that of simian virus 40 and shows very limited homology with the simian virus 40 sequence. This leads to the suggestion that the overlap segments of both viruses have been freed from stringency imposed on drifting during evolution and that proteins VP2 and VP3 of polyoma virus may have been truncated by the appearance of a termination codon within the sequence.  相似文献   

10.
11.
The sequence of 3,687 nucleotides from the 3' end of the Sendai virus genome (Z strain) was determined by a molecular cloning technique followed by rapid sequence analysis. Two large open reading frames, one consisting of 1,572 nucleotides and the other of 1,704 nucleotides, were observed in the region, that is OP-1 and OP-2 from the 3' end of the genome. The amino acid sequences of the gene products were predicted from the observed sequence. Determination of amino acid compositions of viral proteins, P, HN, Fo, NP and M, led us to conclude that NP and P are the gene products of OP-1 and OP-2, respectively. An additional open reading frame consisting of 612 nucleotides (OP-3) was discovered in the 3' most proximal region of OP-2. The predicted product of OP-3 was considered to be viral non-structural protein C. The leader sequence of 51 nucleotides at the 3' terminal of the genome and consensus sequences at 3' and 5' ends of each gene for proteins NP and P were identified.  相似文献   

12.
The genome structure of a densovirus from a silkworm was determined by sequencing more than 85% of the complete genome DNA. This is the first report of the genome organization of an insect parvovirus deduced from the DNA sequence. In the viral genome, two large open reading frames designated 1 and 2 and one smaller open reading frame designated 3 were identified. The first two open reading frames shared the same strand, while the third was found in the complementary sequence. Computer analysis suggested that open reading frame 2 may encode all four structural proteins. The genome organization and a part of the nucleotide sequence were conserved among the insect densovirus, rodent parvoviruses, and a human dependovirus. These viruses may have diverged from a common ancestor.  相似文献   

13.
Bovine enteric caliciviruses (BEC) are associated with diarrhea in young calves. The BEC strains detected in Europe form a third genogroup within the genus "Norwalk-like viruses" (NLV) of the family Caliciviridae. In this report, we present sequence, clinical, and histological data characterizing a novel enteropathogenic BEC strain, NB, detected in fecal specimens from calves in the United States. The complete RNA genome of the NB virus is 7,453 bases long and is organized into two open reading frames (ORFs). ORF-1 is 2,210 amino acids long and encodes a large nonstructural polyprotein contiguous with the major capsid protein (VP1), similar to the lagoviruses and "Sapporo-like viruses" (SLV). The conserved calicivirus motifs were identified in the nonstructural proteins. ORF-2 is located at the 3' end of the genome and encodes a small basic protein (VP2) of 225 amino acids. The 5' and 3' untranslated regions are 74 and 67 bases long, respectively. Among caliciviruses, NB virus shows amino acid identities of 14.1 to 22.6% over the entire ORF-1 nonstructural-protein sequence with NLV, SLV, vesivirus, and lagovirus strains, while the overall sequence identity of the complete NB VP-1 with other caliciviruses is low, varying between 14.6 and 26.7%. Phylogenetic analysis of the complete VP1 protein, including strains from all four calicivirus genera, showed the closest grouping of NB virus to be with viruses in the genus Lagovirus, which cause liver infections and systemic hemorrhage in rabbits. In gnotobiotic calves, however, NB virus elicited only diarrhea and intestinal lesions that were most severe in the upper small intestine (duodenum and jejunum), similar to the NLV BEC strains. The tissues of major organs, including the lung, liver, kidney, and spleen, had no visible microscopic lesions.  相似文献   

14.
Molecular characterization of a newly recognized mouse parvovirus.   总被引:4,自引:1,他引:3       下载免费PDF全文
Mouse parvovirus (MPV), formerly known as orphan parvovirus, is a newly recognized rodent parvovirus distinct from both serotypes of minute virus of mice (MVM). Restriction analysis of the MPV genome indicated that many restriction sites in the capsid region were different from those of MVM, but most sites in the nonstructural (NS) region of the genome were conserved. MPV resembled MVM in genome size, replication intermediates, and NS proteins. Replication intermediates in infected cells were the same for MPV and MVM, including packaging of the 5-kb minus (V) strand. Furthermore, the MPV NS proteins were the same size as and present at the same ratio as the MVM(i) proteins in infected cells. Cloning and sequencing of the MPV genome revealed a genome organization closely resembling that of MVM, with conservation of open reading frames, promoter sequences, and splice sites. The left terminal hairpin was identical to that of MVM(i), but the right terminus was not conserved. Also, the MPV genome was unique in that it contained 1.8 copies of the terminal repeat sequence rather than the 1 or 2 copies found in other parvoviruses. The predicted amino acid sequence of the NS proteins of MPV and MVM(i) were nearly identical. In contrast, the predicted amino acid sequence of the capsid proteins of MPV was different from sequences of other parvoviruses. These results confirm that MPV is a distinct murine parvovirus and account for the antigenic differences between MPV and MVM.  相似文献   

15.
In an attempt to experimentally define the roles of viral proteins encoded by the B19 genome in the viral life cycle, we utilized the B19 infectious clone constructed in our previous study to create two groups of B19 mutant genomes: (i) null mutants, in which either a translational initiation codon for each of these viral genes was substituted by a translational termination codon or a termination codon was inserted into the open reading frame by a frameshift; and (ii) a deletion mutant, in which half of the hairpin sequence was deleted at both the 5' and the 3' termini. The impact of these mutations on viral infectivity, DNA replication, capsid protein production, and distribution was systematically examined. Null mutants of the NS and VP1 proteins or deletion of the terminal hairpin sequence completely abolished the viral infectivity, whereas blocking expression of the 7.5-kDa protein or the putative protein X had no effect on infectivity in vitro. Blocking expression of the proline-rich 11-kDa protein significantly reduced B19 viral infectivity, and protein studies suggested that the expression of the 11-kDa protein was critical for VP2 capsid production and trafficking in infected cells. These findings suggest a previously unrecognized role for the 11-kDa protein, and together the results enhance our understanding of the key features of the B19 viral genome and proteins.  相似文献   

16.
Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kDa polyprotein. The coding sequence is flanked by a 1,144-nucleotide 5' nontranslated leader sequence and a 317-nucleotide 3' nontranslated region, followed by a poly(A) tail. The three major structural proteins, VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa), were identified, and their genes were mapped to the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. The genome organization, capsid morphology, and sequence comparison data indicate that DWV is a member of the recently established genus Iflavirus.  相似文献   

17.
C Wirblich  H J Thiel    G Meyers 《Journal of virology》1996,70(11):7974-7983
The 7.5-kb plus-stranded genomic RNA of rabbit hemorrhagic disease virus contains two open reading frames of 7 kb (ORF1) and 351 nucleotides (ORF2) that cover nearly 99% of the genome. The aim of the present study was to identify the proteins encoded in these open reading frames. To this end, a panel of region-specific antisera was generated by immunization of rabbits with bacterially expressed fusion proteins that encompass in total 95% of the ORF1 polyprotein and almost the complete ORF2 polypeptide. The antisera were used to analyze the in vitro translation products of purified virion RNA of rabbit hemorrhagic disease virus. Our studies show that the N-terminal half of the ORF1 polyprotein is proteolytically cleaved to yield three nonstructural proteins of 16, 23, and 37 kDa (p16, p23, and p37, respectively). In addition, a cleavage product of 41 kDa which is composed of VPg and a putative nonstructural protein of approximately 30 kDa was identified. Together with the results of previous studies which identified a trypsin-like cysteine protease (TCP) of 15 kDa, a putative RNA polymerase (pol) of 58 kDa, and the major capsid protein VP60, our data establish the following gene order in ORF1: NH2-p16-p23-p37 (helicase)-p30-VPg-TCP-pol-VP60-COOH. Immunoblot analyses showed that a minor structural protein of 10 kDa is encoded in ORF2. The data provide the first complete genetic map of a calicivirus. The map reveals a remarkable similarity between caliciviruses and picornaviruses with regard to the number and order of the genes that encode the nonstructural proteins.  相似文献   

18.
Detailed transcription map of Aleutian mink disease parvovirus   总被引:20,自引:18,他引:2       下载免费PDF全文
  相似文献   

19.
F Y Liu  B Roizman 《Journal of virology》1991,65(10):5149-5156
The herpes simplex virus 1 open reading frames UL26 and UL26.5 are 3' coterminal. The larger, UL26 open reading frame encodes a protein approximately 80,000 in apparent molecular weight and contains the promoter and coding sequence of the UL26.5 gene, which specifies a capsid protein designated infected cell protein 35. The larger product contains in its entirety the amino acid sequence of the smaller protein. We report that the UL26 gene encodes a protease which catalyzes its own cleavage and that of the more abundant product of UL26.5. By inserting the coding sequence of an epitope to a cytomegalovirus monoclonal antibody and homologs of the immunoglobulin G binding domain of staphylococcal protein A into the 3' termini of the coding domains of the two open reading frames, we identified both products of the cleavage and determined that the cleavage site is approximately 20 amino acids from the carboxyl termini of both proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号