首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
  • 1.1. The length of the poly(A) tail at the 3'-end of mRNA may control protein synthesis by bringing the 3'-end in close proximity to the 5'-end of the noncoding region as well as increasing the duration of mRNA translation by its binding to the poly(A) binding protein.
  • 2.2. The rate-limiting step in the decay of the body of the message is the shortening of a long poly(A) tail during mRNA translation. The shortening of the poly(A) tail occurs during pre-elongation in the protein synthesis cycle.
  • 3.3. The shortening of the poly(A) tail during mRNA translation may not involve RNase activity, however poly(A) binding protein seems to play a role, at least in part, in shortening of the poly(A) tail.
  相似文献   

4.
The early steps in the degradation of human c-myc mRNA were investigated, using a previously described cell-free mRNA decay system. The first detectable step was poly(A) shortening, which generated a pool of oligoadenylated mRNA molecules. In contrast, the poly(A) of a stable mRNA, gamma globin, was not excised, even after prolonged incubation. The second step, degradation of oligoadenylated c-myc mRNA, generated decay products whose 3' termini were located within the A+U-rich portion of the 3' untranslated region. These products disappeared soon after they were formed, consistent with rapid degradation of the 3' region. In contrast, the 5' region, corresponding approximately to c-myc exon 1, was stable in vitro. The data indicate a sequential degradation pathway in which 3' region cleavages occur only after most or all of the poly(A) is removed. To account for rapid deadenylation, we suggest that the c-myc poly(A)-poly(A)-binding protein complex is readily dissociated, generating a protein-depleted poly(A) tract that is no longer resistant to nucleases.  相似文献   

5.
The poly(A) tail plays an important role in translation initiation. We report the identification of a mechanism that operates in mammalian somatic cells, and couples mRNA poly(A) tail length with its translation state. The regulation of human ferritin L-chain mRNA by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) is subject to this mechanism: translational repression imposed by IRP binding to the IRE of ferritin L-chain mRNA induces poly(A) tail shortening. For the accumulation of mRNAs with short poly(A) tails, IRP binding to an IRE per se is not sufficient, but must cause translational repression. Interestingly, puromycin and verrucarin (general translation inhibitors that dissociate mRNAs from ribosomes) mimick the negative effect of the specific translational repressor proteins on poly(A) tail length, whereas cycloheximide and anisomycin (general translation inhibitors that maintain the association between mRNAs and ribosomes) preserve long poly(A) tails. Thus, the ribosome association of the mRNA appears to represent the critical determinant. These findings identify a novel mechanism of regulated polyadenylation as a consequence of translational control. They reveal differences in poly(A) tail metabolism between polysomal and mRNP-associated mRNAs. A possible role of this mechanism in the maintenance of translational repression is discussed.  相似文献   

6.
Detachment of flagella in Chlamydomonas reinhardii stimulates a rapid accumulation of tubulin mRNAs. The induced tubulin mRNAs are normally rapidly degraded following flagellar regeneration, but inhibition of protein synthesis with cycloheximide prevents their degradation. alpha-Tubulin poly(A) tail lengths were measured during normal accumulation and degradation, and in cycloheximide-treated cells. To measure alpha-tubulin mRNA poly(A) chain lengths with high resolution, specific 3' fragments of alpha 1- and alpha 2-tubulin mRNAs, generated by RNase H digestion of mRNA-oligonucleotide hybrids, were sized by Northern analysis. Both alpha-tubulin mRNAs have a newly synthesized poly(A) chain of about 110 adenylate residues. The poly(A) tails shorten with time, and show an average length of 40 to 60 adenylate residues by 90 minutes after deflagellation, at which time induced alpha-tubulin mRNA is being rapidly degraded. Poly(A) loss is significantly accelerated in cycloheximide-treated cells, and this loss is not attributible simply to the longer time the stabilized molecules spend in the cytoplasm. A large fraction of alpha-tubulin mRNA accumulates as mRNA with very short poly(A) tails (less than 10 residues) in the presence of cycloheximide, indicating that deadenylated alpha-tubulin mRNAs can be stable in vivo, at least in the absence of protein synthesis. The rate and extent of poly(A) loss in cycloheximide are greater for alpha 2-tubulin mRNA than for alpha 1-tubulin mRNA. This difference cannot be attributed to differential ribosome loading. This finding is interesting in that the two mRNAs are very similar in sequence with the exception of their 3' untranslated regions.  相似文献   

7.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs.  相似文献   

8.
9.
10.
11.
A comparison between the half-lives of 10 specific yeast mRNAs and their distribution within polysomes (fractionated on sucrose density gradients) was used to test the relationship between mRNA translation and degradation in the eukaryote Saccharomyces cerevisiae. Although the mRNAs vary in their distribution across the same polysome gradients, there is no obvious correlation between the stability of an mRNA and the number of ribosomes it carries in vivo. This suggests that ribosomal protection against nucleolytic attack is not a major factor in determining the stability of an mRNA in yeast. The relative lengths of the poly(A) tails of 9 yeast mRNAs were analysed using thermal elution from poly(U)-Sepharose. No dramatic differences in poly(A) tail length were observed amongst the mRNAs which could account for their wide ranging half-lives. Minor differences were consistent with shortening of the poly(A) tail as an mRNA ages.  相似文献   

12.
In Chlamydomonas, the usual rapid degradation of tubulin mRNAs induced by flagellar amputation is prevented by inhibition of protein synthesis with cycloheximide. Evidence is presented that the ability of cycloheximide to stabilize alpha-tubulin mRNA depends on the time of addition. Addition of cycloheximide to cells before induction strongly stabilizes the induced mRNAs, while addition after their synthesis stabilizes them only transiently. Moreover, cycloheximide inhibition does not stabilize the same alpha-tubulin mRNA species in uninduced cells. These results suggest that cycloheximide is not acting to stabilize the induced alpha-tubulin mRNAs simply by preventing ribosome translocation. The stabilized state of tubulin mRNA was found to correlate with its occurrence on smaller polysomes but larger EDTA-released mRNP particles than the unstable state. A second effect of cycloheximide on the metabolism of induced tubulin mRNAs is to accelerate complete poly(A) removal. This effect of cycloheximide inhibition, unlike stabilization, occurs whenever cycloheximide is added to cells, and appears unrelated to stabilization. The effect is shown to be mRNA-specific; poly(A)-shortening on the rbcS2 mRNA is not altered in the presence of cycloheximide, nor do completely deadenylated molecules accumulate. Experiments in which cells were released from cycloheximide inhibition suggest that deadenylated alpha-tubulin mRNAs may be less stable than their polyadenylated counterparts during active translation.  相似文献   

13.
RNA processing is an essential gene expression step and plays a crucial role to achieve diversity of gene products in eukaryotes. Various aberrant mRNAs transiently produced during RNA processing reactions are recognized and eliminated by specific quality control systems. It has been demonstrated that these mRNA quality control systems stimulate the degradation of aberrant mRNA to prevent the potentially harmful products derived from aberrant mRNAs. Recent studies on quality control systems induced by abnormal translation elongation and termination have revealed that both aberrant mRNAs and proteins are subjected to rapid degradation. In NonStop Decay (NSD) quality control system, a poly(A) tail of nonstop mRNA is translated and the synthesis of poly-lysine sequence results in translation arrest followed by co-translational degradation of aberrant nonstop protein. In No-Go Decay (NGD) quality control system, the specific amino acid sequences of the nascent polypeptide induce ribosome stalling, and the arrest products are ubiquitinated and rapidly degraded by the proteasome. In Nonfunctional rRNA Decay (NRD) quality control system, aberrant ribosomes composed of nonfunctional ribosomal RNAs are also eliminated when aberrant translation elongation complexes are formed on mRNA. I describe recent progresses on the mechanisms of quality control systems and the relationships between quality control systems. This article is part of a Special issue entitled: RNA Decay mechanisms.  相似文献   

14.
15.
16.
17.
The poly(A)-limiting element (PLE) is a conserved sequence that restricts the length of the poly(A) tail to <20 nt. This study compared the translation of PLE-containing short poly(A) mRNA expressed in cells with translation in vitro of mRNAs with varying length poly(A) tails. In transfected cells, PLE-containing mRNA had a <20-nt poly(A) and accumulated to a level 20% higher than a matching control without a PLE. It was translated as well as the matching control mRNA with long poly(A) and showed equivalent binding to polysomes. Translation in a HeLa cell cytoplasmic extract was used to examine the impact of the PLE in the context of varying length poly(A) tails. Here the overall translation of +PLE mRNA was less than control mRNA with the same length poly(A), and the PLE did not overcome the effect of a short poly(A) tail. Because poly(A)-binding protein (PABP) is a dominant effector of poly(A)-dependent translation we reasoned excess PABP in our extract might overwhelm PLE regulation of translation. This was confirmed by experiments where PABP was inactivated with poly(rA) or Paip2, and the effect of both treatments was reversed by addition of recombinant PABP. These data indicate that the PLE functionally substitutes for bound PABP to stimulate translation of short poly(A) mRNA.  相似文献   

18.
Analysis of polyadenylation site usage of the c-myc oncogene.   总被引:8,自引:3,他引:5       下载免费PDF全文
The c-myc gene contains 2 well conserved polyadenylation (pA) sites. In all human and rat cell lines from various differentiation stages and tissue types the amount of mRNA terminating at the second pA site is 6-fold higher than the amount ending at the upstream site. This is not due to a difference in stability of the two mRNA types and therefore must be due to preferential usage of the downstream site. The usage of the pA sites is not altered during growth factor induction of quiescent cells. We have not been able to detect differences in behavior between mRNAs ending at either pA site. Both types of mRNA are induced upon treatment of cells with cycloheximide. Furthermore, we have shown that the poly(A) tail of c-myc mRNA is lost during degradation of the messenger, as was described previously for c-myc mRNA in an in vitro system. The time required for the loss of the poly(A) tail is similar to the half-life of c-myc mRNA.  相似文献   

19.
A B Sachs  R W Davis 《Cell》1989,58(5):857-867
Depletion of the essential poly(A) binding protein (PAB) in S. cerevisiae by promoter inactivation or by the utilization of a temperature-sensitive mutation (pab1-F364L) results in the inhibition of translation initiation and poly(A) tail shortening. Reversion analysis of pab1-F364L yielded seven independent, extragenic cold-sensitive mutations (spb1-spb7) that also suppress a PAB1 deletion. These mutations allow translation initiation without significantly changing poly(A) tail lengths in the absence of PAB, and they affect the amount of 60S ribosomal subunit. Consistent with this, SPB2 encodes the ribosomal protein L46. These data suggest that the 60S subunit mediates the PAB requirement of translation initiation, thereby ensuring that only intact poly(A)+ mRNA will be translated efficiently in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号