首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mucopolysaccharidosis type IIIB (MPS-IIIB, Sanfilippo type B Syndrome) is a heterosomal, recessive lysosomal storage disorder resulting from a deficiency of [alpha]-N-acetylglucosaminidase (NAGLU). To characterize this enzyme further and evaluate its potential for enzyme replacement studies we expressed the NAGLU-encoding cDNA in Chinese hamster ovary cells (CHO-K1 cells) and purified the recombinant enzyme from the medium of stably transfected cells by a two-step affinity chromatography. Two isoforms of recombinant NAGLU with apparent molecular weights of 89 and 79 kDa were purified and shown to differ in their glycosylation pattern. The catalytic parameters of both forms of the recombinant enzyme were indistinguishable from each other and similar to those of NAGLU purified from various tissues. However, compared to other recombinant lysosomal enzymes expressed from CHO-K1 cells, the mannose-6-phosphate receptor mediated uptake of the secreted form of recombinant NAGLU into cultured skin fibroblasts was considerably reduced. A small amount of phosphorylated NAGLU present in purified enzyme preparations was shown to be endocytosed by MPS-IIIB fibroblasts via the mannose-6-phosphate receptor-mediated pathway and transported to the lysosomes, where they corrected the storage phenotype. Direct metabolic labeling experiments with Na(2) (32)PO(4) confirmed that the specific phosphorylation of recombinant NAGLU secreted from transfected CHO cells is significantly lower when compared with a control lysosomal enzyme. These results suggest that the use of secreted NAGLU in future enzyme and gene replacement therapy protocols will be severely limited due to its small degree of mannose-6-phosphorylation.  相似文献   

2.
BHK cells transfected with human cathepsin D (CD) cDNA normally segregate the autologous hamster cathepsin D while secreting a large proportion of the human proenzyme. In the present work, we have utilized these transfectants to examine to what extent the mannose-6-phosphate-dependent pathway for lysosomal enzyme segregation contributes to the differential sorting of human and hamster CD. We report that, in recipient control BHK cells, the rate of mannose-6-phosphate-dependent endocytosis of human procathepsin D secreted by transfected BHK cells is lower than that of hamster procathepsin D and much lower than that of human arylsulphatase A. The missorted human enzyme bears phosphorylated oligosaccharides and most of its phosphate residues are “uncovered”, like the autologous enzyme. Thus, despite both the Golgi-associated modifications of oligosaccharides, i.e. the phosphorylation of mannose and the uncovering of mannose-6-phosphate residues, which proceed on human and hamster procathepsin D with comparable efficiency, only the latter is accurately packaged into lysosomes. Ammonium chloride partially affects the lysosomal targeting of cathepsin D in control BHK cells, whereas in transfected cells, this drug strongly inhibits the maturation of human procathepsin D and slightly enhances its secretion. These data indicate that: (1) over-expression of a lysosomal protein does not saturate the Golgi-associated reactions leading to the synthesis of mannose-6-phosphate; (2) a portion of cathepsin D is targeted independently of mannose-6-phosphate receptors in the transfected BHK cells; and (3) whichever mechanism for lysosomal delivery of autologous procathepsin D is involved, this is not saturated by the high rate of expression of human cathepsin D.  相似文献   

3.
Previous work with the yeast Saccharomyces cerevisiae has demonstrated a role for a phosphatidylinositol-specific PI 3-kinase, the product of the VPS34 gene, in the targeting of newly synthesized proteins to the vacuole, an organelle functionally equivalent to mammalian lysosomes (Schu, P. V., K. Takegawa, M. J. Fry, J. H. Stack, M. D. Waterfield, and S. D. Emr. 1993. Science [Wash. DC]. 260:88-91). The activity of Vps34p kinase is significantly reduced by the PI 3-kinase inhibitors wortmannin, a fungal metabolite, and LY294002, a quercetin analog (Stack, J. H., and S. D. Emr. 1994. J. Biol. Chem. 269:31552-31562). We show here that at concentrations which inhibit VPS34-encoded PI 3- kinase activity, wortmannin also inhibits the processing and delivery of newly synthesized cathepsin D to lysosomes in mammalian cells with half-maximal inhibition of delivery occurring at 100 nM wortmannin. As a result of wortmannin action, newly synthesized, unprocessed cathepsin D is secreted into the media. Moreover, after accumulation in the trans- Golgi network (TGN) at 20 degrees C, cathepsin D was rapidly missorted to the secretory pathway after addition of wortmannin and shifting to 37 degrees C. At concentrations that inhibited lysosomal enzyme delivery, both wortmannin and LY294002 caused a highly specific dilation of mannose 6-phosphate receptor (M6PR)-enriched vesicles of the prelysosome compartment (PLC), which swelled to approximately 1 micron within 15 min after treatment. With increasing time, the inhibitors caused a significant yet reversible change in M6PR distribution. By 3 h of treatment, the swollen PLC vacuoles were essentially depleted of receptors and, in addition, there was a fourfold loss of receptors from the cell surface. However, M6PRs were still abundant in the TGN. These results are most consistent with the interpretation that PI 3-kinase regulates the trafficking of lysosomal enzymes by interfering with a M6PR-dependent sorting event in the TGN. Moreover, they provide evidence that trafficking of soluble hydrolases to mammalian lysosomes and yeast vacuoles rely on similar regulatory mechanisms.  相似文献   

4.
Human alpha-galactosidase A (alpha-Gal A) is the lysosomal glycohydrolase that cleaves the terminal alpha-galactosyl moieties of various glycoconjugates. Overexpression of the enzyme in Chinese hamster ovary (CHO) cells results in high intracellular enzyme accumulation and the selective secretion of active enzyme. Structural analysis of the N -linked oligosaccharides of the intracellular and secreted glycoforms revealed that the secreted enzyme's oligosaccharides were remarkably heterogeneous, having high mannose (63%), complex (30%), and hybrid (5%) structures. The major high mannose oligosaccharides were Man5-7GlcNAc2 species. Approximately 40% of the high mannose and 30% of the hybrid oligosaccharides had phosphate monoester groups. The complex oligosaccharides were mono-, bi- , 2,4-tri-, 2,6-tri- and tetraantennary with or without core-region fucose, many of which had incomplete outer chains. Approximately 30% of the complex oligosaccharides were mono- or disialylated. Sialic acids were mostly N -acetylneuraminic acid and occurred exclusively in alpha2, 3-linkage. In contrast, the intracellular enzyme had only small amounts of complex chains (7.7%) and had predominantly high mannose oligosaccharides (92%), mostly Man5GlcNAc2 and smaller species, of which only 3% were phosphorylated. The complex oligosaccharides were fucosylated and had the same antennary structures as the secreted enzyme. Although most had mature outer chains, none were sialylated. Thus, the overexpression of human alpha-Gal A in CHO cells resulted in different oligosaccharide structures on the secreted and intracellular glycoforms, the highly heterogeneous secreted forms presumably due to the high level expression and impaired glycosylation in the trans- Golgi network, and the predominately Man5-7GlcNAc2 cellular glycoforms resulting from carbohydrate trimming in the lysosome.   相似文献   

5.
Cationic amphiphilic drugs (CADs) cause massive intracellular accumulation of phospholipids, thereby resulting in phospholipidosis (PLD); however, the molecular mechanism underlying CAD-induced PLD remains to be resolved. Here, we found that treatment of normal rat kidney cells with CADs known to induce PLD caused redistribution of a mannose 6-phosphate/IGF-II receptor (MPR300) from the TGN to endosomes and concomitantly increased the secretion of lysosomal enzymes, resulting in a decline of intracellular lysosomal enzyme levels. These results enable the interpretation of why CADs cause excessive accumulation of undegraded substrates, including phospholipids in lysosomes, and led to the conclusion that the impaired MPR300-mediated sorting system of lysosomal enzymes reflects the general mechanism of CAD-induced PLD. In addition, our findings suggest that the measurement of lysosomal enzyme activity secreted into culture medium is useful as a rapid and convenient in vitro early screening system to predict drugs that can induce PLD.  相似文献   

6.
The intracellular transport of newly synthesized lysosomal hydrolases to lysosomes requires the presence of one or more phosphorylated high mannose-type oligosaccharides per enzyme. A receptor that mediates mannose-6-PO4-specific uptake of lysosomal enzymes is expressed on the surface of fibroblasts and presumably accounts for the intracellular transport of newly synthesized enzymes to the lysosome. In this study, we examined the internalization of lysosomal enzyme-derived phosphorylated oligosaccharides by cultured human fibroblasts. Oligosaccharides of known specific activity bearing a single phosphate in monoester linkage were internalized with Kuptake of 3.2 X 10(-7) M, whereas oligosaccharides bearing two phosphates in monoester linkage were internalized with a Kuptake of 3.9 X 10(-8) M. Thus, phosphorylated high mannose-type oligosaccharides appear to be the minimal structure required for recognition and uptake by the fibroblast receptor. The finding that the Kuptake for monophosphorylated oligosaccharides is 100-fold less than the reported Ki for mannose-6-phosphate indicates that the fibroblast phosphomannosyl receptor contains a binding site that recognizes features of the oligosaccharide in addition to mannose-6-phosphate.  相似文献   

7.
Lysosomal enzymes have been shown to be synthesized as microsomal precursors, which are processed to mature enzymes located in lysosomes. We examined the effect of ammonium chloride on the intracellular processing and secretion of two lysosomal enzymes, beta-glucuronidase and beta-galactosidase, in mouse macrophages. This lysosomotropic drug caused extensive secretion of both precursor and mature enzyme forms within a few hours, as documented by pulse radiolabeling and molecular weight analysis. The normal intracellular route for processing and secretion of precursor enzyme was altered in treated cells. A small percentage of each precursor was delivered to the lysosomal organelle slowly. Most precursor forms traversed the Golgi apparatus, underwent further processing of carbohydrate moieties, and were then secreted in a manner similar to secretory proteins. The lag time for secretion of newly synthesized beta-galactosidase precursor was notably longer than that for the beta-glucuronidase precursor. The source of the secreted mature enzyme was the lysosomal organelle. Macrophages from the pale ear mutant were markedly deficient in secretion of mature lysosomal enzyme but secreted precursor forms normally. These results suggest that ammonia-treated macrophages contain two distinct intracellular pathways for secretion of lysosomal enzymes and that a specific block in the release of lysosomal contents occurs in the pale ear mutant.  相似文献   

8.
Studies in recent years have indicated that secretion of certain lysosomal hydrolases can be enhanced under various conditions. One such protein, the major excreted protein (MEP) of Kirsten virus-transformed NIH 3T3 (KNIH) fibroblasts, is a lysosomal cysteine protease whose synthesis and secretion are affected by viral transformation and growth factors. We have been studying the synthesis and transport of MEP in order to understand better the mechanisms responsible for regulation of lysosomal enzyme secretion. Synthesis of MEP in KNIH cells was found to be 25-fold greater than that in untransformed NIH cells, and 94% of the MEP made was secreted. This was in contrast to NIH cells which secreted only 11% of the newly synthesized MEP. The high level of secretion by the transformed cells was relatively specific in that most other lysosomal enzymes were retained. MEP isolated from both NIH and KNIH cells exhibited a low intrinsic affinity for the mannose-6-phosphate receptor which was at least 10-fold lower than that of other lysosomal enzymes. On the basis of these results, we suggest that both the high level of MEP synthesis and the intrinsic low affinity of MEP for the receptor are responsible for the specific increase in MEP secretion by transformed cells.  相似文献   

9.
At present little is known of the biochemical machinery controlling transport of newly synthesized lysosomal hydrolases from the trans- Golgi network (TGN) to endosomes. The demonstration that Vps34p (a protein required for targeting soluble hydrolases to the vacuole in Saccharomyces cerevisiae) is a phosphatidylinositol 3-kinase (PI3-K) suggested the possibility that a homologous enzyme might be involved in the equivalent step in mammalian cells. Using the PI3-K inhibitors wortmannin and LY294002, I provide evidence to support this hypothesis. Treatment of K-562 cells with wortmannin induced secretion of procathepsin D, with half-maximal inhibition of accurate targeting to lysosomes at 10-20 nM. Kinetic analysis indicated that a late Golgi (TGN) step was affected, and that other constitutive vesicular transport events were not. The M6P recognition signal was still generated in the presence of wortmannin suggesting that the drug was directly inhibiting export of the receptor-ligand complex from the TGN, while removal of the drug led to a rapid restoration of accurate sorting. At the concentrations used, wortmannin and LY294002 are presently accepted to be specific inhibitors of PI3-K. I conclude that these data implicate such an enzyme in the trafficking of M6P-receptor- ligand complexes from the TGN towards lysosomes.  相似文献   

10.
We have examined the distribution of mannose-6-phosphate (Man6P) receptors (215 kD) for lysosomal enzymes in cultured Clone 9 hepatocytes at various times after the addition or removal of lysosomotropic weak bases (chloroquine or NH4Cl). Our previous studies demonstrated that after treatment with these agents, Man6P receptors are depleted from their sorting site in the Golgi complex and accumulate in dilated vacuoles that could represent either endosomes or lysosomes (Brown, W. J., E. Constantinescu, and M. G. Farquhar, 1984, J. Cell Biol., 99:320-326). We have now investigated the nature of these vacuoles by labeling NH4Cl-treated cells simultaneously with anti-Man6P receptor IgG and lysosomal or endosomal markers. The structures in which the immunolabeled receptors are found were identified as endosomes based on the presence of endocytic tracers (lucifer yellow and cationized ferritin). The lysosomal membrane marker, lgp120, was associated with a separate population of swollen vacuoles that did not contain detectable Man6P receptors. When cells were allowed to recover from weak base treatment, the receptors reappeared in the Golgi cisternae of most cells (approximately 90%) within approximately 20 min, indicating that as the intra-endosomal pH drops and lysosomal enzymes dissociate, the entire population of receptors rapidly recycles to Golgi cisternae. When NH4Cl-treated cells were allowed to endocytose Man6P, a competitive inhibitor of lysosomal enzyme binding, the receptors also recycled to the Golgi cisternae, suggesting that lysosomal enzymes can dissociate from the receptors under these conditions (high pH + presence of competitive inhibitor). From these results it can be concluded that the intracellular itinerary of the 215-kD Man6P receptor involves its cycling via coated vesicles between the Golgi complex and endosomes, ligand dissociation is both necessary and sufficient to trigger the recycling of Man6P receptors to the Golgi complex, and endosomes rather than secondary lysosomes represent the junction where endocytosed material and primary lysosomes carrying receptor-bound lysosomal enzymes meet.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Radiolabel pulse-chase and subcellular fractionation procedures were used to analyze the transport, proteolytic processing, and sorting of two lysosomal enzymes in Dictyostelium discoideum cells treated with the weak bases ammonium chloride and chloroquine. Dictyostelium lacks detectable cation-independent mannose-6-phosphate receptors and represents an excellent system to investigate alternative mechanisms for lysosomal enzyme targeting. Exposure of growing cells to ammonium chloride, which increased the pH in intracellular vacuoles from 5.4 to 5.8-6.1, slowed but did not prevent the proteolytic processing and correct localization of pulse-radiolabeled precursors to the lysosomal enzymes alpha-mannosidase and beta-glucosidase. Additionally, ammonium chloride did not affect transport of the enzymes to the Golgi complex, as they acquired resistance to the enzyme endoglycosidase H at the same rate as in control cells. When the pH of lysosomal and endosomal organelles was raised to 6.4 with higher concentrations of ammonium chloride, the percentage of secreted (apparently mis-sorted) precursor polypeptides increased slightly, but proteolytic processing of intermediate forms of lysosomal enzymes to mature forms was greatly reduced. The intermediate and mature forms of alpha-mannosidase and beta-glucosidase did, however, accumulate intracellularly in vesicles similar in density to lysosomes. In contrast, in cells exposed to low concentrations of chloroquine the intravacuolar pH increased only slightly (to 5.7); however, enzymes were inefficiently processed and, instead, rapidly secreted as precursor molecules. Experiments involving the addition of chloroquine at various times during the chase of pulse-radiolabeled cells demonstrated that this weak base acted on a distal Golgi or prelysosomal compartment to prevent the normal sorting of lysosomal enzymes. These results suggest that although acidic endosomal/lysosomal compartments may be important for the complete proteolytic processing of lysosomal enzymes in Dictyostelium, low pH is not essential for the proper targeting of precursor polypeptides. Furthermore, certain amines may induce mis-sorting of these enzymes by pH-independent mechanisms.  相似文献   

12.
To explain the different secretion kinetics of lysosomal enzymes in Dictyostelium discoideum, previous investigators have hypothesized the existence of a heterogeneous population of lysosomes containing either the enzyme acid phosphatase or other hydrolase enzymes. This proposal predicts that at least two targeting mechanisms exist for lysosomal enzymes in this organism. To begin to investigate this possibility, the transport, processing, and targeting of acid phosphatase was studied by using a combination of radiolabel pulse-chase procedures, subcellular fractionations, and indirect immunofluorescence microscopy. Acid phosphatase was initially synthesized in axenically growing cells as a 56-kDa precursor polypeptide that was proteolytically processed after 20 min to a 55-kDa mature protein. This enzyme was rapidly transported from the endoplasmic reticulum to Golgi complex (halftime of 3 min) as measured by the acquisition of resistance to the enzyme endoglycosidase H. Furthermore, Percoll gradient fractionations indicated that radiolabeled forms of acid phosphatase reached dense lysosomal vesicles at about the same time as final processing was occurring. Proper sorting of acid phosphatase in D. discoideum apparently was not critically dependent on low intravacuolar pH since the addition of ammonium chloride did not stimulate the missorting and secretion of acid phosphatase. These results are very similar to previous observations concerning other Dictyostelium lysosomal enzymes. Consistent with the existence of a heterogeneus population of lysosomes, the percentage of radiolabeled acid phosphatase secreted 4 h into a chase period was 15-fold lower as compared with another lysosomal enzyme, beta-glucosidase. However, acid phosphatase, alpha-mannosidase, and beta-glucosidase were all predominantly colocalized as determined by indirect immunofluorescence, which for the first time demonstrates the homogeneous nature of the lysosomal system in D. discoideum. Taken together these results suggest that the processing and transport of acid phosphatase may be similar in nature to the glycosidases. However, the different kinetics of secretion of acid phosphatase versus the colocalized glycosidase enzymes suggests that an undefined mechanism operates to distinguish these classes of enzymes at a step after localization to lysosomes but prior to secretion.  相似文献   

13.
Targeting of lysosomal acid phosphatase with altered carbohydrate   总被引:3,自引:0,他引:3  
Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes, where it is converted into a soluble protein by a limited proteolysis (Waheed et al., 1988, EMBO J. 7, 2351-2358). Transport of human lysosomal acid phosphatase in heterologous BHK-21 cells was examined under conditions that impair mannose-6-phosphate receptor-dependent transport, N-glycosylation or processing of N-linked oligosaccharides. Targeting of lysosomal acid phosphatase to lysosomes was neither affected by antibodies blocking the mannose-6-phosphate/IGF II receptor, nor by NH4Cl, which inhibited the mannose-6-phosphate receptor-dependent targeting of soluble lysosomal enzymes. 1-Deoxynojirimycin, 1-deoxymannojirimycin and swainsonine inhibited processing of N-linked oligosaccharides in lysosomal acid phosphatase without significantly affecting its transport. Tunicamycin inhibited N-glycosylation of lysosomal acid phosphatase. The non-glycosylated lysosomal acid phosphatase polypeptides accumulated within light membranes and were not transported to dense lysosomes. These results indicate that transport of lysosomal acid phosphatase is independent of mannose-6-phosphate receptors, does not involve an acid pH-dependent step and does not require processing of N-linked oligosaccharides. N-glycosylation appears to be necessary to achieve a transport competent form of lysosomal acid phosphatase.  相似文献   

14.
The localization of acid hydrolases was examined in Chinese hamster ovary cells with defective mannose 6-phosphate receptors; these mutants had been shown to exhibit reduced uptake and altered binding of exogenously added acid hydrolase (Robbins, A. R., Myerowitz, R., Youle, R. J., Murray, G. J., and Neville, D. M., Jr. (1981) J. Biol. Chem. 256, 10618-10622). Cells were grown in the presence of [3H]mannose, alpha-L-iduronidase and beta-hexosaminidase were immunoprecipitated sequentially, electrophoresed on polyacrylamide gels containing sodium dodecyl sulfate, and detected by fluorography. About 55% of the alpha-L-iduronidase and beta-hexosaminidase synthesized by the mutants in 12 h was found in the growth medium; parental cells secreted only approximately 15%. The mutants also secreted 2 to 6 times more alpha-mannosidase, beta-glucuronidase, and alpha-L-fucosidase than the parent as determined by measurements of enzyme activity. Intracellular levels of these enzymes were reduced in the mutants. The mutants secreted acid hydrolases in the precursor forms, within the cells these enzymes resided in lysosomes and were processed normally; thus, the mutants appeared aberrant only with respect to distribution of hydrolases between intracellular and extracellular compartments. [35S]methionine-labeled beta-hexosaminidase and alpha-L-iduronidase secreted by the mutants were taken up normally by both human fibroblasts and wild type CHO cells, and this uptake was inhibited by mannose 6-phosphate. Thus, the elevated secretion of acid hydrolases was not due to alteration of the mannose 6-phosphate recognition marker on the enzymes, but appears to result from alterations in the mannose 6-phosphate receptor.  相似文献   

15.
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.  相似文献   

16.
17.
The sensitivity of cultured human and hamster fibroblast cells to killing by the lysosomotropic detergent N-dodecylimidazole (C12-Im) was investigated as a function of cellular levels of general lysosomal hydrolase activity, and specifically of cysteine cathepsin activity. Fibroblasts from patients with mucolipidosis II (I-cell disease) lack mannose-6-phosphate-containing proteins, and therefore possess only 10-15% of the normal level of most lysosomal hydrolases. I-cell fibroblasts are about one-half as sensitive to killing by C12-Im as are normal human fibroblasts. Overall lysosomal enzyme levels of CHO cells were experimentally manipulated in several ways without affecting cell viability: Growth in the presence of 10 mM ammonium chloride resulted in a gradual decrease in lysosomal enzyme content to 10-20% of control values within 3 d. Subsequent removal of ammonium chloride from the growth medium resulted in an increase in lysosomal enzymes, to approximately 125% of control values within 24 h. Treatment with 80 mM sucrose caused extensive vacuolization within 2 h; lysosomal enzyme levels remained at control levels for at least 6 h, but increased 15-fold after 24 h of treatment. Treatment with concanavalin A (50 micrograms/ml) also caused rapid (within 2 h) vacuolation with a sevenfold rise in lysosomal enzyme levels occurring only after 24 h. The sensitivity of these experimentally manipulated cells to killing by C12-Im always paralleled the measured intracellular lysosomal enzyme levels: lower levels were associated with decreased sensitivity while higher levels were associated with increased sensitivity, regardless of the degree of vacuolization of the cells. The cytotoxicity of the cysteine proteases (chiefly cathepsin L in our cells) was tested by inactivating them with the irreversible inhibitor E-64 (100 micrograms/ml). Cell viability, protein levels, and other lysosomal enzymes were unaffected, but cysteine cathepsin activity was reduced to less than 20% of control values. E-64-treated cells were almost completely resistant to C12-Im treatment, although lysosomal disruption appeared normal by fluorescent visualization of Lucifer Yellow CH-loaded cells. It is concluded that cysteine cathepsins are the major or sole cytotoxic agents released from lysosomes by C12-Im. These observations also confirm the previous conclusions that C12-Im kills cells as a consequence of lysosomal disruption.  相似文献   

18.
The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain- deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.  相似文献   

19.
Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane- associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery.  相似文献   

20.
We have investigated the distribution of newly synthesized lysosomal enzymes in endocytic compartments of normal rat kidney (NRK) cells. The mannose-6-phosphate (Man6-P) containing lysosomal enzymes could be iodinated in situ after internalization of lactoperoxidase (LPO) by fluid phase endocytosis and isolated on CI-MPR affinity columns. For EM studies, the ectodomain of the CI-MPR conjugated to colloidal gold was used as a probe specific for the phosphomannosyl marker of the newly synthesized hydrolases. In NRK cells, approximately 20-40% of the phosphorylated hydrolases present in the entire pathway were found in early endocytic structures proximal to the 18 degrees C temperature block including early endosomes. These structures were characterized by a low content of endogenous CI-MPR and were accessible to fluid phase markers internalized for 5-15 min at 37 degrees C. The bulk of the phosphorylated lysosomal enzymes was found in late endocytic structures distal to the 18 degrees C block, rich in endogenous CI-MPR and accessible to endocytic markers internalized for 30-60 min at 37 degrees C. The CI-MPR negative lysosomes were devoid of phosphorylated hydrolases. This distribution was unchanged in cells treated with Man6-P to block recapture of secreted lysosomal enzymes. However, lysosomal enzymes were no longer detected in the early endosomal elements of cells treated with cycloheximide. Immunoprecipitation of cathepsin D from early endosomes of pulse-labeled cells showed that this hydrolase is a transient component of this compartment. These data indicate that in NRK cells, the earliest point of convergence of the lysosomal biosynthetic and the endocytic pathways is the early endosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号