首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G.D. Webster  J.B. Jackson 《BBA》1978,503(1):135-154
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (α, β and γ) upon electrophoresis in sodium dodecyl sulphate.2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol.3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation.4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate.5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates as a single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure.6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography.7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP.8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected.9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 μM, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations.10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores.11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

2.
The antibiotics efrapeptin and leucinostatin inhibited photosynthetic and oxidative phosphorylation and related reactions such as the dark and light ATP-Pi exchange reactions and the Mg-ATPase in Rhodospirillum rubrum chromatophores. Higher concentrations of leucinostatin were required for inhibition of the phenazine methosulfate-catalyzed photophosphorylation and light ATP-Pi exchange reaction than for the endogenous or succinate-induced photophosphorylation and dark ATP-Pi exchange reaction. Efrapeptin and leucinostatin inhibited the ATP-driven transhydrogenase while only the latter inhibited the light-driven transhydrogenase, proton gradient formation, and NAD+ reduction by succinate in chromatophores. Efrapeptin, but not leucinostatin, inhibited the soluble Ca-ATPase activity of the coupling factor obtained from chromatophores. The inhibition was competitive with ATP. It is concluded that efrapeptin is an effective energy transfer inhibitor whose site of action may be localized in the soluble coupling factor, while the effects of leucinostatin are more complex and cannot be explained as a simple uncoupling.  相似文献   

3.
4.
1. In photophosphorylation with chromatophores from Rhodospirillum rubrum, evidence is presented for the synthesis of activated precursors of ATP in the energy-conversion system coupled to photosynthetic electron transport. 2. A significant amount of ATP is synthesized when a reaction mixture containing chromatophores and ADP is illuminated and then incubated with Pi in the dark. ATP is not synthesized to an appreciable extent, either when a reaction mixture containing chromatophores and Pi is illuminated and then incubated with ADP in the dark, or when one containing chromatophores alone is illuminated and then incubated with ADP and Pi in the dark. The amount of ATP thus synthesized is influenced markedly by concentrations of ADP. 3. The chromatophores illuminated with ADP, if allowed to stand in the dark at 30°, gradually lose the ability to form ATP with Pi in the dark. No loss of the ability occurs when the chromatophores illuminated with ADP are allowed to stand in the dark at 13° or in a frozen state. 4. Mg2+ is absolutely required for chromatophores to form ATP in the dark after illumination in the presence of ADP, and for the chromatophores to achieve ATP formation with Pi in the dark. 5. Antimycin A, 2-heptyl-4-hydroxyquinoline N-oxide and o-phenanthroline strongly inhibit the light-dependent acquisition of the ability to form ATP with Pi in the dark, but not the consequent ATP formation with Pi in the dark. Arsenate, 2,4-dinitrophenol, quinacrine hydrochloride, quinine hydrochloride and pyrophosphate inhibit the former or the latter, or both. Oligomycin inhibits the former somewhat more than the latter. 6. From these findings it is suggested that a high-energy intermediate is formed in photosynthetic ATP formation, and that its formation is dependent on ADP but not Pi.  相似文献   

5.
The arginine reagents phenylglyoxal and 2,3-butanedione in borate buffer completely inhibited photophosphorylation and Mg-ATPase of Rhodospirillum rubrum chromatophores. The inactivation rates followed apparent first order kinetics. Oxidative phospho-rylation and the light-dependent ATP-Pi exchange reactions ofR. rubrum chromatophores and the Ca-ATPase activity of the soluble coupling factor were similarly inhibited by 2,3-butanedione in borate buffer. The apparent order of reaction with respect to inhibitor concentrations for all these reactions gave values of near 1 suggesting that inactivation was the consequence of modifying one arginine per active site. ATP synthesis and hydrolysis by R. rubrum chromatophores were strongly protected against inactivation by ADP and ATP, respectively, and by other nucleotides that are substrates of the reactions but not by the products. Similarly, the Ca-ATPase of the soluble coupling factor was protected by ATP but not by ADP. Inactivation of chromatophores reactions by butanedione in borate buffer was more rapid in the light than in the dark. The results suggest that the catalytic sites for ATP synthesis and hydrolysis on the chromatophore coupling factor are different and both contain an essential arginine.  相似文献   

6.
The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

7.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1984,764(1):105-113
The F1-ATPase from Mycobacterium phlei is inactivated by dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and quinacrine mustard. The inactivation is both time-and concentration-dependent and in the case of DCCD being more pronounced at acidic pH. The minimum inactivation half-time (t12) for DCCD, NBD-Cl and quinacrine mustard was observed to be 14, 6 and 7 min, respectively. Inactivation of F1-ATPase resulted in the incorporation of [14C]DCCD as well as [14C]NBD-Cl into α and γ subunits. The incorporation of label into α and γ subunits, utilizing [14C]NBD-Cl, was reversible by dithiothreitol. Complete inactivation, by linear extrapolation to zero activity, revealed that 4 mol [14C]DCCD and 4 mol [14C]NBD-Cl bind per mol F1-ATPase. Kinetic and binding studies show that these probes bind to site(s) distinct from ATP-binding site in F1-ATPase from M. phlei.  相似文献   

8.
A procedure was developed to isolate a membrane fraction of rat skeletal muscle which contains a highly active Mg2+-ATPase (5–25 μmol Pi/mg min). The rate of ATP hydrolysis by the Mg2+-ATPase was nonlinear but decayed exponentially (first-order rate constant ≥0.2 s?1 at 37°C). The rapid decline in the ATPase activity depended on the presence of ATP or its nonhydrolyzable analog 5′-adenylyl imidodiphosphate (AdoPP[NH]P). Once inactivated, removal of ATP from the medium did not immediately restore the original activity. ATP- or AdoPP[NH]P-dependent inactivation could be blocked by concanavalin A, wheat germ agglutinin or rabbit antiserum against the membrane. Additions of these proteins after ATP addition prevented further inactivation but did not restore the original activity. Low concentrations of ionic and nonionic detergents increased the rate of ATP-dependent inactivation. Higher concentrations of detergents, which solubilize the membrane completely, inactivated the Mg2+-ATPase. Cross-linking the membrane components with glutaraldehyde prevented ATP-dependent inactivation and decreased the sensitivity of the Mg2+-ATPase to detergents. It is proposed that the regulation of the Mg2+-ATPase by ATP requires the mobility of proteins within the membrane. Cross-linking the membrane proteins with lectins, antiserum or glutaraldehyde prevents inactivation; increasing the mobility with detergents accelerates ATP-dependent inactivation.  相似文献   

9.
Millisecond mixing and quenching experiments were performed in order to study the rate of phosphorylation by Pi of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles. A rapid phosphoenzyme formation was observed when the vesicles were preincubated in the absence of Ca2+ prior to the addition of Pi and Mg2+ to the medium, the half-time being in the range of 6 to 10 ms. A lag phase and a 5- to 10-fold slower rate of phosphoenzyme formation were observed when the enzyme was preincubated with Ca2+ prior to the addition to the reaction mixture of Pi, Mg2+, and an excess of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid. The rate of phosphoenzyme hydrolysis was measured either by the addition of Ca2+ or, in the absence of Ca2+, by tracing the hydrolysis of radioactive phosphoenzyme upon the addition of nonradioactive Pi. In the presence of Ca2+, the rate of phosphoenzyme hydrolysis was found to be one order of magnitude slower than the rate of hydrolysis measured in the absence of Ca2+. Different rates of phosphoenzyme formation and cleavage were found depending on whether sarcoplasmic reticulum vesicles or purified Ca2+-dependent ATPase were used. A transient phosphorylation by Pi was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, Mg2+, and excess of Ca2+. The enzyme was phosphorylated during the initial 100 ms, the phosphoenzyme formed being slowly hydrolyzed in the subsequent incubation intervals. In these conditions ATP synthesis was observed if ADP was added to the mixture 100 ms after starting the reaction. No transient phosphorylation by Pi was observed when the enzyme was preincubated with Ca2+. Synthesis of a small but significant amount of ATP was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, ADP, Mg2+, and 20 mm CaCl2. This was not observed when the enzyme was preincubated in the presence of Ca2+.  相似文献   

10.
A coupling factor necessary for the photophosphorylation and Mg2+-ATPase activities of Rhodospirillum rubrum chromatophores has been separated from these particles. Although the redox potential of coupling factor deficient chromatophores is slightly more oxidized than of the control, the addition of the coupling factor for reconstitution does not alter the redox potential. Phenazine methosulfate cannot restore or significantly enhance the photophosphorylation activities of uncoupled or reconstituted chromatophores compared to the control. The coupling factor can bind to coupling factor deficient membranes without addition of magnesium ions and thus restore the photophosphorylation and Mg2+-ATPase activities of these vesicles. The Ca2+-ATPase in the coupling factor preparation shows binding characteristics similar to those of the coupling factor.  相似文献   

11.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

12.
(1) In isolated chloroplasts (class B) electron flow is controlled mainly by the intrathylakoid pH (pHin). A decrease in pHin due to the light-driven injection of protons inside the thylakoid leads to the retardation of electron flow between two photosystems. This effect can be abolished by uncouplers or under photophosphorylation conditions (addition of Mg2+-ADP with Pi); Mg2+-ATP does not influence the steady-state rate of electron flow, (2) The steady-state pH difference, ΔpH, across the thylakoid membrane was estimated from quantitative analysis of the rate of P-700+ reduction. In chloroplasts, without adding Mg2+-ADP, ΔpH increases from 1.6 to 3.2 as the external pH rises from 6 to 9.5. Under the photophosphorylation conditions, ΔpH decreases showing a minimum at the external pH 7.5 (ΔpH ? 0.5–1.0). (3) The value of photosynthetic control, K, measured as the ratio of the steady-state rates of P-700+ reduction in the presence of Mg2+-ADP (with Pi) and without adding Mg2+-ADP is dependent on external pH variations, showing a maximum value of K ? 3.5 at pHout 7.5. This pH dependence coincides with that of the ADP-stimulated ΔpH decrease. (4) Experiments with spin labels provide evidence that the light-induced changes in the thylakoid membrane are sensitive to the addition of uncouplers and are affected only slightly by the addition of Mg2+-ADP and Pi.  相似文献   

13.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

14.
The Rhodospirillum rubrum pyridine dinucleotide transhydrogenase system is comprised of a membrane-bound component and an easily dissociable soluble factor. Active transhydrogenase complex was solubilized by extraction of chromatophores with lysolecithin. The membrane component was also extracted from membranes depleted of soluble factor. The solubilized membrane component reconstituted transhydrogenase activity upon addition of soluble factor. Various other ionic and non-ionic detergents, including Triton X-100, Lubrol WX, deoxycholate, and digitonin, were ineffectual for solubilization and/or inhibited the enzyme at higher concentrations. The solubilized membrane component was significantly less thermal stable than the membrane-bound component. None of the pyridine dinucleotide substrate affected the thermostability of the solubilized membrane-bound component, whereas NADP+ and NADPH afforded protection to membrane-bound component. NADPH stimulated trypsin inactivation of membrane-bound component to a greater extent than NADP+, but inactivation of solubilized membrane component was stimulated to the same extent by both pyridine dinucleotides. The solubilized membrane component appears to have a slightly higher affinity for soluble factor than does the membrane-bound component.Abbreviations AcPyAD+ oxidized 3-acetylpyridine adenine dinucleotide - BChl bacteriochlorophyll - CT-particles chromatophores depleted of soluble transhydrogenase factor and devoid of transhydrogenase activity This work was supported by Grant GM 22070 from the National Institutes of Health, United States Public Health Service. Paper I of this series is R. R. Fisher et al. (1975)  相似文献   

15.
The isolation of the chloroplast ATP synthase complex (CF0-CF1) and of CF1 from Dunaliella bardawil is described. The subunit structure of the D. bardawil ATPase differs from that of the spinach in that the D. bardawil α subunit migrates ahead of the β subunit and ε-migrates ahead of subunit II of CF0 when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The CF1 isolated from D. bardawil resembles the CF1 isolated from Chladmydomonas reinhardi in that a reversible, Mg2+-dependent ATPase is induced by selected organic solvents. Glycerol stimulates cyclic photophosphorylation catalyzed by D. bardawil thylakoid membranes but inhibits photophosphorylation catalyzed by spinach thylakoid membranes. Glycerol (20%) also stimulates the rate of ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 proteoliposomes but inhibits the activity with the spinach enzyme. The ethanol-activated, Mg2+-ATPase of the D. bardawil CF1 is more resistant to glycerol inhibition than the octylglucoside-activated, Mg2+-ATPase of spinach CF1 or the ethanol-activated, Mg2+-dependent ATPase of the C. reinhardi CF1. Both cyclic photophosphorylation and ATP-Pi exchange catalyzed by D. bardawil CF0-CF1 are more sensitive to high concentrations of NaCl than is the spinach complex.  相似文献   

16.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

17.
1. We have isolated a mutant of Escherichia coli K12 (strain AN295) that forms de-repressed amounts of Mg2+,Ca2+-stimulated adenosine triphosphatase. 2. The Mg2+,Ca2+-stimulated triphosphatase activity was separated from membrane preparations from strain AN295 by extraction with 5mm-Tris–HCl buffer containing EDTA and dithiothreitol, resulting in a loss of the ATP-dependent transhydrogenase activity. The non-energy-linked transhydrogenase activity remained in the membrane residue. 3. The solubilized Mg2+,Ca2+-stimulated adenosine triphosphatase activity from strain AN295 was partially purified by repeated gel filtration. The addition of the purified Mg2+,Ca2+-stimulated adenosine triphosphatase to the membrane residue from strain AN295 reactivated the ATP-dependent transhydrogenase activity. 4. Strain AN296, lacking Mg2+,Ca2+-stimulated adenosine triphosphatase activity, was derived by transducing the mutant allele, uncA401, into strain AN295. The ATP-dependent transhydrogenase activity was lost but the non-energy linked transhydrogenase was retained. 5. The ATP-dependent transhydrogenase activity in membrane preparations from strain AN296 (uncA) could not be re-activated by the purified Mg2+,Ca2+-stimulated adenosine triphosphatase from strain AN295. However, after extraction by 5mm-Tris–HCl buffer containing EDTA and dithiothreitol, the ATP-dependent transhydrogenase activity could be re-activated by the addition of the purified Mg2+,Ca2+-stimulated adenosine triphosphatase from strain AN295 to the membrane residue from strain AN296 (uncA).  相似文献   

18.
Sarcoplasmic reticulum (SR) Ca2+-ATPase was phosphorylated by Pi at pH 8.0 in the presence of dimethyl sulfoxide (Me2SO). Under these conditions, it was possible to measure transient 45Ca2+ binding to the phosphoenzyme. Binding reached 1.2 Ca2+ per phosphoenzyme (E-PCax) within 10 min in 30% Me2SO, 20 mM MgCl2 and 0.1 mM Pi and the phosphoenzyme only decreased by 23% during this period. This Ca2+ binding was abolished by thapsigargin, showing that it is associated with functional sites of the Ca2+-ATPase. At 40% Me2SO, simultaneous addition of Ca2+ and ADP increased Ca2+ binding up to almost four Ca2+ per phosphoenzyme (ADPE-PCay), revealing a species bearing simultaneously four Ca2+ sites. Both E-PCax and ADPE-PCay were further identified as distinct species by (2′,3′-O-2(2,4,6-trinitrophenyl)adenosine 5′-triphosphate) fluorescence, which revealed long-range modifications in the Ca2+-transport sites induced by ADP binding to E-P. In addition, E-PCax was shown to be a functional intermediate of the cycle leading to ATP synthesis provided that Me2SO was diluted. These findings indicate that more than two functional Ca2+-sites exist on the functional Ca2+-ATPase unit, and that the additional sites become accessible upon ADP addition. This is compatible with a four-site model of the SR Ca2+-ATPase allowing simultaneous binding of Ca2+ at lumenal and cytosolic sites. The stoichiometries for Ca2+ binding found here could either be interpreted as binding of four Ca2+ on a Ca2+-ATPase monomer considered as the functional unit or as binding of two Ca2+ per monomer of a functional dimer.  相似文献   

19.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

20.
L-type Ca2+ currents conducted by Cav1.2 channels initiate excitation–contraction coupling in cardiac myocytes. Intracellular Mg2+ (Mgi) inhibits the ionic current of Cav1.2 channels. Because Mgi is altered in ischemia and heart failure, its regulation of Cav1.2 channels is important in understanding cardiac pathophysiology. Here, we studied the effects of Mgi on voltage-dependent inactivation (VDI) of Cav1.2 channels using Na+ as permeant ion to eliminate the effects of permeant divalent cations that engage the Ca2+-dependent inactivation process. We confirmed that increased Mgi reduces peak ionic currents and increases VDI of Cav1.2 channels in ventricular myocytes and in transfected cells when measured with Na+ as permeant ion. The increased rate and extent of VDI caused by increased Mgi were substantially reduced by mutations of a cation-binding residue in the proximal C-terminal EF-hand, consistent with the conclusion that both reduction of peak currents and enhancement of VDI result from the binding of Mgi to the EF-hand (KD ≈ 0.9 mM) near the resting level of Mgi in ventricular myocytes. VDI was more rapid for L-type Ca2+ currents in ventricular myocytes than for Cav1.2 channels in transfected cells. Coexpression of Cavβ2b subunits and formation of an autoinhibitory complex of truncated Cav1.2 channels with noncovalently bound distal C-terminal domain (DCT) both increased VDI in transfected cells, indicating that the subunit structure of the Cav1.2 channel greatly influences its VDI. The effects of noncovalently bound DCT on peak current amplitude and VDI required Mgi binding to the proximal C-terminal EF-hand and were prevented by mutations of a key divalent cation-binding amino acid residue. Our results demonstrate cooperative regulation of peak current amplitude and VDI of Cav1.2 channels by Mgi, the proximal C-terminal EF-hand, and the DCT, and suggest that conformational changes that regulate VDI are propagated from the DCT through the proximal C-terminal EF-hand to the channel-gating mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号