首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J.D. Butlin  G.B. Cox  F. Gibson 《BBA》1973,292(2):366-375
1. A mutant strain of Escherichia coli unable to grow with succinate as sole carbon source was isolated. This mutant was found to carry a mutation in a gene (designated uncB) mapping at about minute 73.5 on the E. coli chromosome and close to the uncA gene which is probably the structural gene for (Mg2+,Ca2+)-stimulated ATPase.2. The uncB401 allele was transduced into two other strains of E. coli and the transductants compared with the parent strains.3. Strains carrying the uncB401 allele have low aerobic growth yields when grown on limiting concentrations of glucose, but unlike mutations in the uncA gene, mutations in the uncB gene do not impair anaerobic growth on a glucose-mineral salts medium.4. Oxidase activities in membranes from the normal strains and strains carrying the uncB401 allele were similar.5. Measurement of P/O ratios indicated that a mutation in the uncB gene causes uncoupling of phosphorylation associated with electron transport with d-lactate as substrate.6. (Mg2+,Ca2+)-stimulated ATPase activities in the normal strains and in strains carrying the uncB401 allele are similar.7. Estimation of the energy-linked and non-energy-linked transhydrogenase activities in membrane preparations from both the normal and mutant strains indicated that the protein affected by a mutation in the uncB gene is essential for the functioning of the ATP-dependent energy-linked transhydrogenase.8. It is concluded that two proteins, specified by the uncA and uncB genes, are essential for phosphorylation coupled to d-lactate oxidation and also for the energy-linked transhydrogenase activity using ATP as the energy source.  相似文献   

2.
Golgi apparatus rich fractions from lactating bovine mammary gland had an Mg2+-dependent, Ca2+-stimulated adenosine triphosphatase. These Golgi apparatus fractions also accumulated Ca2+ in vitro. Accumulation of Ca2+ required ATP and could be abolished by treatment either with low concentrations of deoxycholate followed by ultrasound, or by heating at 100 °C for 10 min. The adenosine triphosphatase activity of Golgi apparatus was strongly stimulated by low concentrations of Ca2+ and moderately stimulated by high concentrations of K+. This activity was unaffected by Na+ and was not inhibited by ouabain. The pH optimum for the Mg2+-dependent hydrolysis of ATP was 7.5, the Km was 5 × 10−5 M and the activation energy was 6 000 calories/mole. This Mg2+-dependent adenosine triphosphatase activity was also found in rough endoplasmic reticulum, smooth microsomes and milk fat globule membrane, the latter membrane being derived directly from the apical plasma membrane. All of these membrane fractions had the ability to specifically accumulate Ca2+. Specific accumulation was highest with smooth microsomes and lowest with milk fat globule membrane with Golgi apparatus and rough endoplasmic reticulum being intermediate. These observations provide one plausible explanation for intracellular Ca2+ accumulation and secretion into milk. Further, these results help explain the ultrastructural observations of casein micelle formation in secretory vesicles elaborated by Golgi apparatus.  相似文献   

3.
1. A method involving isoelectric precipitation and chromatography on SE-Sephadex (sulphoethyl-Sephadex) is described for the preparation of the troponin complex free of tropomyosin from low-ionic-strength extracts of natural actomyosin and myofibrils. 2. Purified troponin complex required tropomyosin to inhibit the Mg2+-stimulated adenosine triphosphatase activity and superprecipitation of desensitized actomyosin in the presence of ethanedioxybis(ethylamine)tetra-acetate. An upper limit of 35000 for the `molecular weight' of the troponin complex was derived from the amounts required to bring about 50% of the maximum inhibition of the Mg2+-stimulated adenosine triphosphatase activity of desensitized actomyosin of known concentration. 3. In the presence of dissociating reagents the troponin complex could be dissociated into inhibitory and Ca2+-sensitizing factors, which could be isolated separately on SE-Sephadex. The inhibitory factor inhibited the Mg2+-stimulated adenosine triphosphatase activity and superprecipitation of desensitized actomyosin independently of the concentration of free Ca2+ in the medium. 4. The Ca2+-sensitizing factor changed its electrophoretic mobility on polyacrylamide gel in the presence of ethanedioxybis(ethylamine)tetra-acetate. It formed a complex with the inhibitory factor at low ionic strength and the original biological activity of the troponin complex could be restored on mixing the inhibitory factor with the Ca2+-sensitizing factor in the ratio of about 3:2. 5. Evidence is presented indicating that the ability of tropomyosin preparations to restore relaxing-protein-system activity to the troponin complex and their inhibitory effect on the Ca2+-stimulated adenosine triphosphatase activity of desensitized actomyosin are two properties of different stability to preparative procedures and tryptic digestion. This suggests that the relaxing protein system of muscle may contain another as yet uncharacterized component.  相似文献   

4.
1. A new mutant strain (AN228) of Escherichia coli K12, unable to couple phosphorylation to electron transport, has been isolated. The mutant allele (unc-405), in strain AN228, was found to map near the uncA and uncB genes at about minute 74 on the E. coli genome. 2. A transductant strain (AN285) carrying the unc-405 allele is similar to the uncA and uncB mutants described previously in that it is unable to grow on succinate, gives a low aerobic yield on limiting concentrations of glucose, has a normal rate of electron transport, is unable to couple phosphorylation to electron transport, and lacks ATP-dependent transhydrogenase activity. 3. Strain AN285 (unc-405) is similar to an uncA mutant, but different from an uncB mutant, in that it is unable to grow anaerobically in a glucose-mineral-salts medium, and membrane preparations do not have Mg(2+)-stimulated adenosine triphosphatase activity. 4. Strain AN285 (unc-405) does not form an aggregate analogous to the membrane-bound Mg(2+)-stimulated adenosine triphosphatase aggregate found in normal cells. In this respect it differs from strain AN249 (uncA(-)), which forms an inactive membrane-bound Mg(2+)-stimulated adenosine triphosphatase aggregate.  相似文献   

5.
1. Membrane preparations from both uncA(-) and uncB(-) mutant strains of Escherichia coli K12, in which electron transport is uncoupled from phosphorylation, were fractionated by washing with a low-ionic-strength buffer. The fractionation gave a ;5mm-Tris wash' and a ;membrane residue' from each strain. This technique, applied to membranes from normal cells, separates the Mg(2+),Ca(2+)-stimulated adenosine triphosphatase activity from the membrane-bound electron-transport chain and the non-energy-linked transhydrogenase activity. 2. Reconstitution of both oxidative phosphorylation and the ATP-dependent transhydrogenase activity was obtained by a combination of the ;membrane residue' from strain AN249 (uncA(-)) with the ;5mm-Tris wash' from strain AN283 (uncB(-)). 3. Valinomycin plus NH(4) (+) inhibited oxidative phosphorylation both in membranes from a normal strain of E. coli and in the reconstituted membrane system derived from the mutant strains. 4. The electron-transport-dependent transhydrogenase activity was located in the membrane residue and was de-repressed in both the mutant strains. 5. The spatial and functional relationships between the proteins specified by the uncA and uncB genes and the transhydrogenase protein are discussed.  相似文献   

6.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

7.
Kosterin  S. O. 《Neurophysiology》2003,35(3-4):187-200
Calcium ions play a crucial role in the excitation/contraction coupling in smooth muscles. I would like to interpret the biochemical mechanisms underlying Ca2+ exchange and dynamics of such an exchange in the smooth muscles. Particular emphasis is laid on the examination of kinetic, energetic, and catalytic properties of the membrane-linked energy-dependent Ca2+-transporting systems involved in regulation of the intracellular Ca2+ concentration in smooth muscle cells (SMC). It was suggested that the Mg2+,ATP-dependent plasma membrane calcium pump (Ca2+,Mg2+-ATPase) plays a key role in regulation of the Ca2+ concentration in SMC. The purpose of this review is to analyze some of our own results concerning kinetic, energetic, and catalytic properties of the calcium pump of the SMC plasma membrane. In our experiments, we used different biochemical models (namely, fractions of the membrane subcellular structures, highly purified Ca2+,Mg2+-ATPase of the SMC plasma membrane solubilized and reconstituted in the lyposomes, and suspension of digitonin-treated SMC) and a number of methods (including preparative biochemistry, enzymology, membranology, tracer 45Ca2+ flux analysis, and chemical and enzymological kinetics). We have shown that sodium azide-insensitive Mg2+,ATP-dependent Ca2+ accumulation in ureter smooth muscle microsomes is determined by two components. One component represents the Mg2+,ATP-dependent calcium pump of the sarcoplasmic reticulum functionally potentiated by Ca2+-precipitating permeating anions, oxalate or phosphate and inhibited by thapsigargin or cyclopiazonic acid, the highly selective inhibitors of the calcium pump of sarco(endo)plasmic rerticulum. Another component represents the Mg2+,ATP-dependent calcium pump of the plasma membrane functionally potentiated by phosphate. This pump is not inhibited by thapsigargin and cyclopiazonic acid. The effects of temperature, dielectric permeability (D), and ionic strength on the activity of purified Ca2+,Mg2+-ATPase solubilized from the myometrial sarcolemma were studied. The results suggest that changes in the polarity of the incubation medium markedly affect the activity of transport Ca2+,Mg2+-ATPase, and electrostatic interactions between the enzyme activity center and specific ligands (Mg·ADP-, in particular) significantly contribute to the energetics of ATP hydrolysis. Therefore, our data show that changes in the incubation medium polarity significantly affects the ATP-hydrolase activity of Ca2+,Mg2+-ATPase solubilized from the SMC plasma membranes, and electrostatic interactions between the enzyme active sites and reactants (in particular, Mg·ADP-) contribute to a significant extent to the energetics of ATP hydrolysis. We cannot rule out that under physiological conditions the local D values of the myoplasm may differ from that of water, and, moreover, may change (especially near the membrane surface) depending on the metabolic level of SMC. We suppose that local changes in the cytoplasmic D value will affect the plasma membrane calcium pump and, consequently, the efficiency of control of intracellular Ca2+ homeostasis in smooth muscle. So, our biochemical models are suitable experimental objects for studying the kinetic, energetic, and catalytic properties of the Mg2+,ATP-dependent calcium pump of the SMC plasma membrane. In addition, our data might be useful for screening of the mechanisms underlying the action of different physico-chemical factors involved in modulation of the contraction/relaxation cycle.  相似文献   

8.
1. After removal of tropomyosin and troponin from the `natural'' actomyosin complex, the adenosine triphosphatase activity of the resulting `desensitized'' actomyosin is stimulated to the same extent by various bivalent cations with an ionic radius in the range 0·65–0·99å when tested at optimum concentration of the metal ion in the presence of 2·5mm-ATP at low ionic strength and pH7·6. Under identical conditions the adenosine triphosphatase activity of myosin alone is stimulated to an appreciable extent only by Ca2+ (ionic radius 0·99å). 2. Tropomyosin narrows the range of size of the stimulatory cations by inhibiting specifically the adenosine triphosphatase activity of `desensitized'' actomyosin when stimulated by Ca2+ or the slightly smaller Cd2+ (ionic radius 0·97å). Tropomyosin has no effect on the adenosine triphosphatase activity of `desensitized'' actomyosin when stimulated by the smaller cations, nor on the Ca2+-activated adenosine triphosphatase activity of myosin alone. 3. The adenosine triphosphatase activity of the `natural'' actomyosin system (containing tropomyosin and troponin) stimulated by the smallest cation, Mg2+ (ionic radius 0·65å), is low when the system is deprived of Ca2+ but high in the presence of small amounts of Ca2+. This sensitivity to Ca2+ seems to be a unique feature of the Mg2+-stimulated system. 4. The changes in specificity of the myosin adenosine triphosphatase activity in its requirement for bivalent cations caused by interaction with actin, tropomyosin and troponin primarily concern the size of the metal ions. The effects on enzymic properties of myofibrils due to tropomyosin and troponin can be demonstrated at low and at physiological ionic strength.  相似文献   

9.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

10.
Summary Inside-out vesicles prepared from human red blood cells took up Ca2+ by an active transport process. Membranes from the same red blood cells displayed Ca2+-activated, Mg2+-dependent adenosine triphosphatase activity. Both the initial rate of Ca2+ transport and the (Ca2++Mg2+)-adenosine triphosphatase activity were increased approximately twofold by the calcium binding protein, calmodulin. Activities in the absence of added calmodulin were termed basal activities. Calmodulin-activated Ca2+ transport and adenosine triphosphatase activities could be antagonized in a relatively selective fashion by the phenothiazine tranquilizer drug, trifluoperazine. High concentrations of trifluoperazine also inhibited basal Ca2+ transport and adenosine triphosphatase activity. By contrast, calmodulin binding protein from beef brain selectively antagonized the effect of calmodulin on Ca2+ transport with no inhibition of basal activity. Ruthenium red antagonized calmodulin-activated and basal activity with equal potency. The results demonstrate that although phenothiazines can act as relatively selective antagonists of calmodulin-induced effects, other effects are possible and cannot be ignored. Calmodulin-binding protein may be a useful tool in the analysis of calmodulin functions. Ruthenium red probably interacts with Ca2+ pump adenosine triphosphatase at a site not related to calmodulin.  相似文献   

11.
Membranes from a mutant strain of Escherichia coli K12 carrying the uncD409 allele were washed in low-ionic-strength buffers in the presence or absence of the proteinase inhibitor p-aminobenzamidine. Unlike membranes from a normal strain, those from strain AN463 (uncD409) did not become proton-permeable, as judged by NADH-induced atebrinfluorescence quenching, when the membranes were washed in the absence of p-aminobenzamide. Furthermore, ATP-dependent atebrin-fluorscence quenching in such washed membranes could not be reconstituted by the addition of solubilized Mg2+-stimulated adenosine triphosphatase preparations. The examination by two-dimensional polyacrylamide-gel electrophoresis of the polypeptide composition of the washed membranes from strain AN463 (uncD409) indicated the presence of a polypeptide of similar molecular weight to the normal beta-subunit of the Mg2+-stimulated adenosine triphosphatase, but with an altered isoelectric point. Both the normal and abnormal beta-subunits were identified in membranes prepared from a partial diploid strain carrying both the unc+ and uncD409 alleles. It is concluded that the uncD gene codes for the beta-subunit of the Mg2+-stimulated adenosine triphosphatase.  相似文献   

12.
Washing of excised corn (Zea mays L., variety WF9×M14) root tissue is accompanied by an increase in (Mg2+ + K+)-stimulated adenosine triphosphatase. This is the adenosine triphosphatase described by Fisher, Hansen, and Hodges as positively correlated with ion accumulation rates. The increase in activity is confined to the microsomal fraction. A close parallel exists between increases in adenosine triphosphatase and phosphate absorption, and they respond similarly to inhibitors of RNA and protein synthesis. However, the amplitude of change is much smaller in adenosine triphosphatase. Possible reasons for this discrepancy are discussed.  相似文献   

13.
The preincubation of isolated sarcoplasmic reticulum vesicles in Tris-Cl (pH 7.3) increases their (Ca2+ + Mg2+)-dependent adenosine triphosphatase activity and decreases their ATP-dependent Ca uptake capacity. These effects of Tris are dependent on the preincubation time and the Tris concentration; they are maximal below 10 μm Ca and decrease upon the increase of Ca concentration in the preincubation media, and they increase upon the increase of the preincubation pH. Differences in ATPase activity between preincubated and control vesicles are abolished by A23187 but not by carbonyl cyanide p-trifluoromethoxy phenyl hydrazone. The results suggest that: (i) Preincubation of the vesicles in Tris causes an increase of their permeability for Ca, or a membrane damage. (ii) Tris must diffuse within the vesicles to promote these effects. (iii) Ca prevents these effects by decreasing the membrane permeability for Tris. The basic findings were reproduced replacing Tris by imidazole.  相似文献   

14.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km = 0.25 μM, Vmax = 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

15.
A new mutant strain of Escherichia coli in which phosphorylation is uncoupled from electron transport was isolated. A genetic-complementation analysis, using partial diploid strains, showed that the new mutant allele, uncD409, is in a gene distinct from the other previously identified genes uncA, uncB and uncC. A strain carrying the uncd409 allele has no Mg2+ ion-stimulated adenosine triphosphatase activity and is therefore phenotypically similar to strains carrying the uncA401 mutant allele. Complementation between the uncA401 and the uncD409 alleles occurred, as indicated by growth of partial diploid strains on succinate and their growth yields on limiting concentrations of glucose. Complementation was confirmed by using membranes prepared from the above partial diploids. Such membranes were found to have Mg2+-stimulated adenosine triphosphatase activity, ATP-dependent transhydrogenase activity ADP-induced atebrin-fluorescence quenching and low but significant amounts of oxidative phosphorylation.  相似文献   

16.
Magnesium-dependent adenosine triphosphatase has been purified from sheep kidney medulla plasma membranes. The purification, which is based on treatment of a kidney plasma membrane fraction with 0.5% digitonin in 3 mm MgCl2, effectively separates the Mg2+-ATPase from (Na+ + K+)-ATPase present in the same tissue and yields the Mg2+-ATPase in soluble form. The purified enzyme is activated by a variety of divalent cations and trivalent cations, including Mg2+, Mn2+, Ca2+, Co2+, Fe2+, Zn2+, Eu3+, Gd3+, and VO2+. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme shows two bands with Rf values corresponding to molecular weights of 150,000 and 77,000. The larger peptide is phosphorylated by [γ-32P]ATP, suggesting that this peptide may contain the active site of the Mg2+-ATPase. The Mg2+-ATPase activity is unaffected by the specific (Na+ + K+)-ATPase inhibitor ouabain.  相似文献   

17.
The effect of mersalyl and of antibodies, directed against smooth-muscle myosin and skeletal muscle myosin, on the (Ca2+ + Mg2+)-activated adenosine triphosphatase (Ca,Mg)ATPase) system of mouse liver plasma membranes has been studied. Antismooth-muscle myosin inhibited by 38.6% at optimum substrate concentration the (Ca,Mg)ATPase with a Km of 0.88 × 10?3m. Mersalyl (0.5 mm) also inhibited this enzyme, the percentage inhibition being 44.6% at optimal substrate concentration. These results suggest the presence of a smooth-muscle myosin-like protein in the plasma membrane of mouse liver cells which has an associated (Ca,Mg)ATPase activity.  相似文献   

18.
Lineweaver-Burk plots of Ca2+-activated adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum have been determined for a wide range of substrate concentrations. The plots measured at constant Mg2+ concentrations are normally nonlinear, but approach linearity either as the sarcoplasmic reticulum ages, or when small quantities of Triton-X100 are added. Titration with N-ethylmaleimide has the same effect on the activity of the ATPase measured either at high or low substrate concentrations. Lineweaver-Burk plots measured under conditions where the Mg2+ concentration is varied so as to be always equal to the ATP concentration are linear. These results have been interpreted as evidence that the adenosine triphosphatase has a single active site which uses MgATP as its substrate and which can be modified by free Mg2+.  相似文献   

19.
The Ca2+-dependent adenosine triphosphatase activity associated with the plasma membrane of normal human erythrocytes is similar to that of erythrocytes from patients with hereditary spherocytosis. When spherocytic ghosts are compared to age-matched controls, however, they show a significantly decreased Ca2+-dependent adenosine triphosphatase activity. The role of the relative deficiency of Ca2+-dependent adenosine triphosphatase in spherocytic ghosts is discussed in the light of the effects of intracellular [Ca2+] on the deformability and the rigidity of the cell membrane. This enzyme may be involved in the molecular mechanism of hereditary spherocytosis.  相似文献   

20.
Ca2+ transport activity in synaptosomal membranes has been identified as having two major components: Ca2+-stimulated ATP hydrolysis and ATP-dependent CA2+ uptake. Both processes exhibit similar affinities for Ca2+ and operate maximally under identical buffer conditions. Subcellular fractionation studies revealed the Ca2+/Mg2+ ATPase and ATP-dependent CA2+ uptake activities to be highest in synaptic plasma membrane fractions 1 and 2, with lesser activity in synaptic vesicles and mitochondria. Progressive treatment with Triton X-100 activated, then decreased Ca2+/Mg2+ ATPase, Mg2+ ATPase and Ca2+ ATPase. ATP-dependent Ca2+ uptake was progressively decreased by similar treatment with Triton X-100. These studies illustrate that Ca2+ ATPase and ATP-dependent Ca2+ uptake may provide two important mechanisms for buffering of cytosolic Ca2+ at the nerve terminal. These systems may function to rapidly sequester cytosolic Ca2+ following a rise during depolarization and then extrude Ca2+ from the terminal against a concentration gradient. This regulation of cytosolic Ca2+, represented by two processes of the type seen in other plasma membranes, may play critical roles in calcium homeostasis in nerve cells.Footnote: Portions of this research were submitted by K. M. Garrett in partial fulfillment of requirements for the Doctor of Philosophy Degree in Pharmacology at the University of Texas Health Science Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号