首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant chemical defense against herbivores is a complex process which involves a number of secondary compounds. It is known that the concentration of leaf surface lipophilic compounds (SLCs), particularly those of flavonoid aglycones are increased with the defoliation treatment of silver birch Betula pendula. In this study we investigated how the alteration of SLCs concentration in the food affects the fitness and innate immunity of the gypsy moth Lymantria dispar. We found that a low SLCs concentrations in consumed leaves led to a rapid larval development and increased females’ pupae weight (= fecundity) compared to larvae fed with leaves with high SLCs content. Inversely, increasing the compounds concentration in an artificial diet produced the reverse effects: decreases in both larval weight and larval survival. Low SLCs concentrations in tree leaves differently affected larval innate immunity parameters. For both sexes, total hemocytes count in the hemolymph increased, while the activity of plasma phenoloxidase decreased when larvae consume leaves with reduced content of SLCs. Our results clearly demonstrate that the concentration of SLCs in silver birch leaves affects not only gypsy moth fitness but also their innate immune status which might alter the potential resistance of insects against infections and/or parasitoids.  相似文献   

2.
The gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis, overlap geographically as well as in their host ranges. Adult female swallowtails are incapable of distinguishing between damaged and undamaged leaves, and the opportunities for competition between these two species are numerous. We designed field and laboratory experiments to look for evidence of indirect competition between P. canadensis and L. dispar larvae. Swallowtail caterpillars were reared in the laboratory on leaves from gypsy-moth-defoliated and undefoliated trees to explore host-plant effects. We tested for pathogen-mediated interactions by rearing swallowtail larvae on both sterilized and unsterilized leaves from defoliated and undefoliated sources. In addition, we measured the effects of known gypsy moth pathogens, as well as gypsy moth body fluids, on the growth and survival of swallowtail larvae. Field experiments were designed to detect the presence of parasitoid-mediated competition, as well: we recorded parasitism of swallowtail caterpillars placed in the field either where there were no gypsy moth larvae present, or where we had artificially created dense gypsy moth populations. We found evidence that swallowtails were negatively affected by gypsy moths in several ways: defoliation by gypsy moths depressed swallowtail growth rate and survival, whether leaves were sterilized or not; sterilization significantly reduced the effect of defoliation, and gypsy moth body fluids proved lethal; and swallowtail caterpillars suffered significantly increased rates of parasitism when they were placed in the field near gypsy moth infestations.  相似文献   

3.
Summary Both mechanical damage to mountain birch foliage and rearing of moth larvae on the trees reduced the growth of Epirrita autumnata larvae reared on these trees in the following year. The effects of physical damage and some other cues from insects were additive. On bird cherry the performance of Epirrita larvae was equal on untreated trees and on trees artificially defoliated in the previous year, but larval growth was reduced on previously insect-damaged branches. With mountain ash just physical damage per se reduced the performance of Epirrita larvae. On Salix phylicifolia there were no significant differences in the growth or survival of Epirrita on untreated control bushes and on bushes with partial larval damage during the previous year. Among untreated control trees the growth and survivorship of Epirrita were higher on fast-growing willow and bird cherry than on the slow-growing mountain birch. Mountain birch and mountain ash, the two deciduous tree species adapted to nutrient-poor soils, showed delayed inducible resistance triggered by defoliation (artificial or insect-made). This supports the hypothesis that delayed inducible resistance may be a passive response due to nutrient-stress caused by defoliation. On the other hand, the additional increase in the resistance of mountain birch triggered by specific cues from insects suggests that this response may be an evolved defense against leaf-eating insects.  相似文献   

4.
The potential of insects to cause temporary spatial shifts of the forest-steppe borderline was investigated in a case study in the northern Mongolian mountain taiga, where Larix sibirica forests border on montane meadow steppe. Insect herbivores of L. sibirica in northern Mongolia include gypsy moth (Lymantria dispar) and grasshoppers, which defoliate trees. Grasshoppers have (like mice) an additional detrimental effect by decorticating stems of tree seedlings. The hypothesis was tested that insect herbivores cause spatial shifts of the forest-steppe borderline by, first, increasing the mortality of mature trees and, secondly, inhibiting rejuvenation.The first hypothesis was tested by investigating a L. sibirica-meadow steppe ecotone, which was heavily defoliated by gypsy moth in early summer 2005. Defoliation was more severe at the forest edge than in the forest interior. Though only 10% of the larch needles at the forest edge endured the gypsy moth invasion without feeding damage, trees were not sustainably affected, as trees were fully foliated in the subsequent year. This suggests that single gypsy moth invasions, which are frequent in Mongolia's forest-steppe ecotone, do not necessarily result in permanent damage of L. sibirica and, with it, not necessarily lead to local shifts of the treeline, though entire forest edges are often completely defoliated.The second hypothesis was tested by planting 2-year-old seedlings of L. sibirica along the treeline towards the meadow steppe and in the interior of the adjacent light taiga forest. Seedling mortality within 3 months was significantly higher at the forest edge (87%) than in the forest interior (40%). Seedlings at the forest edge died either due to insect and small mammal herbivory (65%) or due to drought (25%). Herbivore damage in the seedlings included defoliation by gypsy moth and grasshoppers as well as decortication by grasshoppers and mice. The high feeding pressure for seedlings at the forest edge suggests that insects and mice inhibit or at least retard forest regeneration at the treeline and can thereby lead to temporary spatial shifts of the treeline towards the steppe, after trees have died, e.g., due to fire or logging.  相似文献   

5.
Structural and functional characteristics of the gypsy moth population in a birch forest were found to be correlated with the level of defoliation and the content of allelochemicals in the foliage. One year after defoliation, the content of flavonoids, total lipid fractions, fatty alcohols, and alcohols increased in the foliage of the heavily (by 75%) damaged trees, whereas the content of free sterols and triterpenes decreased. These changes were associated with low vitality of the insects and a sharp drop in the population density.  相似文献   

6.
Changes in morphology and chemistry of leaf surface in response to herbivore damage may increase plant resistance to subsequent herbivore attack; however, there is lack of studies on induced responses of glandular trichomes and their exudates in woody plants and on effects of these changes on herbivores. We studied delayed induced responses in leaf surface traits of five clones of silver birch (Betula pendula Roth) subjected to various types of mechanical defoliation and simulated winter browsing. Glandular trichome density and concentrations of the majority of surface lipophilic compounds increased in trees defoliated during the previous summer. This induced response was systemic, since control branches in branch defoliated trees responded to the treatments similarly to defoliated branches, but differently from control trees. In contrast to defoliation treatments, simulated winter browsing reduced glandular trichome density on the following summer and had fewer effects on individual surface lipophilic compounds. Moreover, constitutive density of glandular trichomes was negatively correlated with induced total amount of lipophilic compounds per trichome, indicating a trade-off between constitutive and induced resistance in silver birch. Induced changes in leaf surface traits had no significant effect on leaf damage by chewers, miners and gall mites, but increased susceptibility of birch trees to aphids. However, leaf damage by chewers, miners and gall mites in defoliated (but not in control) trees was correlated with concentrations of some fatty acids and triterpenoids, although the direction of relationships varied among herbivore species. This indicates that induction of surface lipophilic compounds may influence birch resistance to herbivores. Our study thus demonstrated both specificity of elicitation of induced responses of birch leaf surface traits by different types of damage and specificity of the effects of these responses on different types of herbivores.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
The survival of insect herbivores on chemically defended plants may often depend on their ability to metabolize these defense compounds. However, only little knowledge is available on how insects actually process most plant defense compounds. We investigated the metabolism of salicinoids, a major group of phenolic glycosides in poplar and willow species, by a generalist herbivore, the gypsy moth (Lymantria dispar). Seven salicinoid metabolites identified in gypsy moth caterpillar feces were mostly conjugates with glucose, cysteine or glycine. Two of the glucosides were phosphorylated, a feature not previously reported for insect metabolites of plant defense compounds. The origins of these metabolites were traced to specific moieties of three major poplar salicinoids ingested, salicin, salicortin and tremulacin. Based on the observed metabolite patterns we were able to deduce the initial steps of salicinoid breakdown in L. dispar guts, which involves cleavage of ester bonds. The conjugated molecules were effectively eliminated within 24 h after ingestion. Some of the initial breakdown products (salicin and catechol) demonstrated negative effects on insect growth and survival in bioassays on artificial diets. Gypsy moth caterpillars with prior feeding experience on salicinoid-containing poplar foliage converted salicinoids to the identified metabolites more efficiently than caterpillars pre-fed an artificial diet. The majority of the metabolites we identified were also produced by other common poplar-feeding insects. The conversion of plant defenses like salicinoids to a variety of water-soluble sugar, phosphate and amino acid conjugates and their subsequent excretion fits the general detoxification strategy found in insect herbivores and other animals.  相似文献   

8.
Individual quaking aspen trees vary greatly in foliar chemistry and susceptibility to defoliation by gypsy moths and forest tent caterpillars. To relate performance of these insects to differences in foliar chemistry, we reared larvac from egg hatch to pupation on leaves from different aspen trees and analyzed leaf samples for water, nitrogen, total nonstructural carbohydrates, phenolic glycosides, and condensed tannins. Larval performance varied markedly among trees. Pupal weights of both species were strongly and inversely related to phenolic glycoside concentrations. In addition, gypsy moth performance was positively related to condensed tannin concentrations, whereas forest tent caterpillar pupal weights were positively associated with leaf nitrogen concentrations. A subsequent study with larvae fed aspen leaves supplemented with the phenolic glycoside tremulacin confirmed that the compound reduces larval performance. Larvae exhibited increased stadium durations and decreased relative growth rates and food conversion efficiencies as dietary levels of tremulacin increased. Differences in performance were more pronounced for gypsy moths than for forest tent caterpillars. These results suggest that intraspecific variation in defensive chemistry may strongly mediate interactions between aspen, gypsy moths and forest tent caterpillars in the Great Lakes region, and may account for differential defoliation of aspen by these two insect species.  相似文献   

9.
1 The twolined chestnut borer, Agrilus bilineatus (Coleoptera: Buprestidae), is a major mortality agent of stressed oak trees. However, patterns of abundance and population change are not well understood. 2 We studied the spatial and temporal variation in abundance of twolined chestnut borer adults during a gypsy moth, Lymantria dispar (Lepidoptera: Lymnatriidae), outbreak and examined the influence of both defoliation and thinning on twolined chestnut borer abundance. 3 In stands that were defoliated by gypsy moth, extensive defoliation occurred in one year, and major overstory tree mortality followed in the next. Most mortality occurred in the year preceding the peak year of twolined chestnut borer abundance and abundance of twolined chestnut borer was positively associated with defoliation and mortality in the previous year. 4 Twolined chestnut borers were more frequently associated with poor or fair crown condition trees than trees with good crown condition and were more abundant on members of the red oak group than the white oak group.  相似文献   

10.
The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects’ fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content) on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula—gypsy moth Lymantria dispar—nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus.  相似文献   

11.
Southern New England is currently experiencing the first major gypsy moth (Lymantria dispar) defoliation event in nearly 30 years. Using a novel approach based on time series of Landsat satellite observations, we generated consistent maps of gypsy moth defoliation for 2015 (first year of the outbreak), 2016 (second year of outbreak), and 2017 (third year of outbreak). Our mapped results demonstrate that the defoliation event continued through the 2017 growing season. Moreover, the affected area more than doubled in extent each year and expanded radially to encompass 4386 km2 of forested area in Rhode Island, eastern Connecticut, and central Massachusetts. The current gypsy moth outbreak is believed to be the result of a series of unusually dry springs in 2014, 2015, and 2016, which suppressed Entomophaga maimaiga, a fungal mortality agent that has historically reduced gypsy moth impacts in this region. The continuation and marked expansion of the outbreak in 2017 despite average spring rainfall suggests that caterpillars were active early in the growing season, and mortality from the fungus likely peaked after significant defoliation had already occurred. Our Landsat time series approach represents an important new source of data on spatial and temporal patterns in gypsy moth defoliation, and continued satellite-based monitoring will be essential for tracking the progress of this and other gypsy moth outbreaks.  相似文献   

12.
Genetic variability of trees influences the chemical composition of tissues. This determines herbivore impact and, consequently, herbivore performance. We evaluated the independent effects of plant genotype and provenance on the tannin content of holm oak (Quercus ilex) and their consequences for herbivory and performance of gypsy moth (Lymantria dispar) larvae. Oak seedlings of 48 open-pollinated families from six populations were grown in a common garden in central Spain. Half the plants were subjected to defoliation by gypsy moth larvae and the other half were destructively sampled for chemical analysis. Tannin content of leaves did not differ significantly among populations but differed significantly among families. Estimates of heritability (h 2) and quantitative genetic differentiation among populations for tannin content (Q ST) were 0.83 and 0.12, respectively. Defoliation was not related to the tannin content of plants nor to spine and trichome densities of leaves, although positive family–mean associations were observed between defoliation and both seed weight and plant height (P < 0.003). Among the oak populations, differential increase in larval weight gain with defoliation was observed. Leaf tannin content in Q. ilex is genetically controlled but does not influence defoliation or predict performance of the larvae. Different efficiencies of food utilisation depending on the oak genotypes indicate that other plant traits are influencing the feeding patterns and fitness of L. dispar and consequent population dynamics.  相似文献   

13.
Although wound-induced responses in plants are widespread, neither the ecological nor the evolutionary significance of phytochemical induction is clear. Several studies have shown, for example, that induced responses can act against both plant pathogens and herbivores simultaneously. We present the first evidence that phytochemical induction can inhibit a pathogen of the herbivore responsible for the defoliation. In 1990, we generated leaf damage by enclosing gypsy moth larvae on branches of red oak trees. We then inoculated a second cohort of larvae with a nuclear polyhedrosis virus (LdNPV) on foliage from the damaged branches. Larvae were less susceptible to virus consumed on foliage from branches with increasing levels of defoliation, and with higher concentrations of gallotannin. Defoliation itself was not related to any of our chemistry measures. Field sampling supported the results of our experiments: death from virus among feral larvae collected from unmanipulated trees was also negatively correlated with defoliation. In 1991, defoliation and gallotannin were again found to inhibit the virus. In addition, gallotannin concentrations were found to be positively correlated with defoliation the previous year. Compared with previous results that demonstrated a delecterious effect of induction on gypsy moth pupal weight and fecundity, the inhibition of the virus should confer an advantage to the gypsy moth. Since leaf damage levels increase as gypsy moth density increases, and since leaf damage inhibits the gypsy moth virus, there is the potential for positive feedback in the system. If phytochemical induction in red oak can inhibit an animal pathogen such as LdNPV, it suggests to us that induction in red oak is a generalized response to tissue damage rather than an adaptive defense against herbivores.  相似文献   

14.
15.
In the context of global warming, the impact of extreme drought events on trees and biotic interactions with herbivore insects is widely unknown. A faster range expansion of insects in a changing climate could lead to mass propagations of pests in forests. Therefore, the aim was to investigate the influence of climatic alterations on leaf palatability. We exposed juvenile Quercus pubescens Willd. individuals of four European provenances (Bulgaria, Germany, Hungary, and Italy) to warming and drought. In addition, we conducted a palatability experiment with the pre-exposed Q. pubescens leaves and the caterpillars of the generalist forest pest Lymantria dispar L. (gypsy moth). Consumed leaf dry material, density of trichomes, and specific leaf area were examined. Surprisingly, neither warming nor drought affected the leaf palatability, but palatability was related to the density of trichomes. The Bulgarian provenance of Q. pubescens, which had the lowest density of trichomes, was most palatable. These findings suggest that global warming and drought might not lead to more frequent infestations of the four tested European Q. pubescens provenances by L. dispar caterpillars in the future.  相似文献   

16.
  • 1 By examining variation in the abilities of polyphagous insects to develop on host plants with secondary metabolites that they have never encountered previously, we may be able to gain some insights into the nature of evolution of biochemical mechanisms to process plant secondary metabolites by phytophagous insects.
  • 2 The present study aimed to examine variation in the ability of gypsy moth larvae Lymantria dispar (Lymantriidae) to complete development on different species of the plant genus Eucalyptus (Myrtaceae). Leaves of at least some Eucalyptus species contain formylated phloroglucinol derivatives. These are secondary metabolites that are evolutionarily unfamiliar to the gypsy moth.
  • 3 Larvae of gypsy moth showed extremely variable responses in larval performance between Eucalyptus species, between individual trees within host plant species, between moth populations, and between individuals within moth populations.
  • 4 Larval survivorship was in the range 0–94%, depending on the host. Failure of at least some larvae to complete development on some Eucalyptus species indicates that gypsy moth larvae have a limited ability to process secondary metabolites in eucalypt leaves.
  • 5 At least some individuals, however, appear to already possess biochemical mechanisms that process the secondary metabolites in leaves of Eucalyptus species, and therefore the abilities of larvae to complete development on phylogenetically and chemically unfamiliar hosts are already present before the gypsy moth encounters these potential hosts.
  相似文献   

17.
R. M. Weseloh 《BioControl》1993,38(4):435-439
Calosoma sycophanta L. adults were fed either gypsy moth (Lymantria dispar L.) larvae or split grapes for set periods of time while their reproduction was monitored. Few female beetles reproduced unless fed gypsy moth larvae during the first week after they ended hibernation. Even females initially fed grapes that were later fed larvae had reduced reproduction. The implications these results have for relationships between beetle and gypsy moth populations are discussed.  相似文献   

18.
This study was conducted to examine the effects of CO2-mediated changes in tree chemistry on the performance of the gypsy moth ((Lymantria dispar L.) and the parasitold Cotesia melanoscela (Ratz.). We used carbon-nutrient balance theory to develop hypotheses regarding changes in tree chemistry and the performance of both insects under elevated CO2. As predicted, levels of foliar nitrogen declined and concentrations of carbon-based compounds (e.g. starch and phenolics) increased under elevated CO2. Gypsy moth performance (e.g. growth, development) was altered by CO2-mediated changes in foliar chemistry, but the magnitude was small and varied across tree species. Larvae feeding on high CO2 aspen exhibited the largest reduction in performance, relative to larvae feeding on birch, oak, or maple. Parasitism by C. melanoscela significantly prolonged gypsy moth development and reduced growth rates. Overall, the effect of parasitism on gypsy moth performance did not differ between CO2 treatments. Altered gypsy moth performance on high CO2 foliage in turn affected parasitoid performance, but the response was variable: parasitoid mortality increased and adult female size declined slightly under high CO2, while development time and adult male size were unaffected. Our results suggest that CO2-induced changes in plant chemistry were buffered to the extent that effects on third trophic level interactions were weak to non-existent for the system examined in this study.  相似文献   

19.
In birch, Betula pubescens, herbivore-induced delayed induced resistance (DIR) of defoliated trees may cause a strong reduction in the potential fecundity of a geometrid folivore Epirrita autumnata. In this study, we examined the biochemical basis of DIR in birch leaves during a natural outbreak of E. autumnata. A set of experimental trees was defoliated at four sites by wild larvae in the peak year of the outbreak, whereas control trees were protected from defoliation by spraying with an insecticide. The biochemical composition of leaves was analysed in the following year and, although the DIR response was weak during this outbreak, causing less than a 20% reduction in the potential fecundity of E. autumnata, some consistent relationships between defoliation, biochemistry and pupal mass of E. autumnata suggested a general biochemical basis for the defoliation-induced responses in birch leaves. Total concentrations of nitrogen, sugars and acetone-insoluble residue (e.g. cell wall polysaccharides, cell-wall-bound phenolics, protein, starch, lignin and hemicellulose) were consistently lower, and total concentrations of phenolics, especially of gallotannins and soluble proanthocyanidins, were higher in the leaves of trees defoliated in the previous year than in those protected from defoliation. The capacity of tannins to precipitate proteins correlated with contents of gallotannins, and was highest in defoliated trees. The pupal mass of E. autumnata showed a strong, positive correlation with concentrations of nitrogen and sugars, and a negative correlation with the acetone-insoluble residue and gallotannins in foliage. Correlations with other measured biochemical traits were weak. The correlation coefficients between biochemical traits and pupal mass consistently had similar signs for both defoliated and insecticide–sprayed trees, suggesting that variation in leaf quality due to defoliation in the previous year was based on similar biochemical traits as variation for other reasons. We suggest that DIR is associated with reduced growth activity of leaves, and may be seen as a delay in the biochemical maturation of leaves in defoliated trees. This explains the high concentration of gallotannins in defoliated trees, a characteristic feature of young leaves. However, the lower content of nitrogen and the higher content of soluble proanthocyanidins in defoliated trees are traits usually characterising mature, not young, leaves, indicating defoliation-induced changes in chemistry in addition to modified leaf age. Our results emphasise the importance of understanding the natural changes in chemistry during leaf maturation when interpreting defoliation-induced changes in leaf biochemistry. Received: 26 January 1998 / Accepted: 10 April 1998  相似文献   

20.
The gypsy moth (Lymantria dispar) is an insect folivore that feeds on a broad range of hosts, and undergoes intermittent outbreaks that cause extensive tree mortality. Like many other herbivorous insects, gypsy moth larvae consume a substrate that is low in nitrogen. Gypsy moth larvae have been known to cannibalize under crowded conditions in the laboratory. In this study, we assessed the influence of nitrogen and density on cannibalism behavior in gypsy moth larvae. Cannibalism rates increased with decreased nitrogen and increased density. There was no interaction between these two parameters. Developmental experiments confirmed that low dietary nitrogen is detrimental, in agreement with previous studies. In a second experiment, we assessed the influence of previous cannibalism experiences on subsequent cannibalism behavior. Gypsy moth larvae that had previously cannibalized other larvae subsequently exhibited higher cannibalism rates than those larvae that had not cannibalized. In conclusion, low nitrogen, high larval density, and previous cannibalism experience are important factors contributing to gypsy moth larval cannibalism. Future studies are needed to estimate benefits to larvae, and to more closely approximate field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号