首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The neonatal Fc receptor for IgG (FcRn) functions to transport maternal IgG to a fetus or newborn and to protect IgG from degradation. Although FcRn is expressed in a variety of tissues and cell types, the extent to which FcRn expression is regulated by immunological and inflammatory events remains unknown. Stimulation of intestinal epithelial cell lines, macrophage-like THP-1, and freshly isolated human monocytes with the cytokine TNF-alpha rapidly up-regulated FcRn gene expression. In addition, the TLR ligands LPS and CpG oligodeoxynucleotide enhanced the level of FcRn expression in THP-1 and monocytes. Treatment of TNF-stimulated THP-1 cells with the NF-kappaB-specific inhibitor or overexpression of a dominant negative mutant inhibitory NF-kappaB (IkappaBalpha; S32A/S36A) resulted in down-regulation of FcRn expression. By using chromatin immunoprecipitation we identified three NF-kappaB binding sequences within introns 2 and 4 of the human FcRn gene. An EMSA confirmed the p50/p50 and/or p65/p50 complex (s) bound to intron 2- or 4-derived oligonucleotides containing putative NF-kappaB binding sequences, respectively. The intronic NF-kappaB sequences in combination with the promoter or alone regulated the expression of a luciferase reporter gene in response to TNF-alpha stimulation or overexpression of NF-kappaB p65 and p50. DNA looping interactions potentially occurred after the stimulation between intronic NF-kappaB sequences and the FcRn promoter as shown by a chromosome conformation capture assay. Finally, TNF-alpha stimulations enhanced IgG transport across an intestinal Caco-2 epithelial monolayer. Together, these data provide the first evidence that NF-kappaB signaling via intronic sequences regulates FcRn expression and function.  相似文献   

3.
Using the cDNA, D-3, coding for Fc gamma 1/gamma 2 receptor of guinea pig macrophages that binds IgG1 and IgG2 (Fc gamma 1/gamma 2R), we examined the cell distribution of this receptor by RNA blot analysis. The Fc gamma 1/gamma 2R mRNA was expressed in polymorphonuclear cells and B cells as well as in macrophages, but not at the detectable level in T cells. The cDNA amplified from RNA of polymorphonuclear cells in the polymerase chain reaction was the same as D-3. The cDNA of B cells was found to have about 140 bp cDNA segment inserted to the cytoplasmic tail of D-3. We found that the cDNA amplified from T cell RNA differed in signal peptide and extracellular domain sequence from cDNAs of other cell types. This cDNA does not seem to be amplified from the mRNAs of contaminating other cell types.  相似文献   

4.
5.
The major histocompatibility complex class I-related neonatal Fc receptor, FcRn, assembles as a heterodimer consisting of a heavy chain and beta(2)-microglobulin (beta(2)m), which is essential for FcRn function. We observed that, in Madin-Darby canine kidney (MDCK) cells, the function of human FcRn in mediating the bidirectional transport of IgG was significantly increased upon co-expression of the human isoform of beta(2)m. In MDCK cells, the presence of human beta(2)m endowed upon human FcRn an enhanced ability to exit the endoplasmic reticulum and acquire mature carbohydrate side-chain modifications at steady state, a faster kinetics of maturation, and augmented localization at the cell surface as a mature glycoprotein able to bind IgG. Although human FcRn with immature carbohydrate side-chain modifications was capable of exhibiting pH-dependent binding of IgG, only human FcRn with mature carbohydrate side-chain modifications was detected on the cell surface. These results show that human FcRn travels to the cell surface via the normal secretory pathway and that the appropriate expression and function of human FcRn in MDCK cells depends upon the co-expression of human beta(2)m.  相似文献   

6.
The neonatal Fc receptor for IgG (FcRn) transfers maternal IgG to the offspring and protects IgG from degradation. The FcRn resides in an acidic intracellular compartment, allowing it to bind IgG. In this study, we found the association of FcRn and invariant chain (Ii). The interaction was initiated within the endoplasmic reticulum by Ii binding to either the FcRn H chain alone or FcRn H chain-beta(2)-microglobulin complex and appeared to be maintained throughout the endocytic pathway. The CLIP in Ii was not required for FcRn-Ii association. The interaction was also detected in IFN-gamma-treated THP-1, epithelial and endothelial cells, and immature mouse DCs. A truncated FcRn without the cytoplasmic tail was unable to traffic to early endosomes; however, its location in early endosomes was restored by Ii expression. FcRn was also detected in the late endosome/lysosome only in the presence of Ii or on exposure to IFN-gamma. In immature human or mouse DCs, FcRn was barely detected in the late endosome/lysosome in the absence of Ii. Furthermore, the cytoplasmic tail of Ii conferred tailless FcRn to route to both the early endosome and late endosome/lysosome in a hybrid molecule. Because the FcRn is expressed in macrophages and DCs or epithelial and endothelial cells where Ii is induced under inflammation and infection, these results reveal the complexity of FcRn trafficking in which Ii is capable of expanding the boundary of FcRn trafficking. Taken together, the intracellular trafficking of FcRn is regulated by its intrinsic sorting information and/or an interaction with Ii chain.  相似文献   

7.
C-reactive protein (CRP) is an acute-phase protein that binds to components of damage tissue, activates C, and stimulates phagocytic cells. CRP binding to receptors on monocytic and polymorphonuclear phagocytes has been shown. Recently, CRP-binding proteins of 38 to 40 kDa and 57 to 60 kDa have been identified on the human promonocyte cell line U-937 and the mouse macrophage cell line PU5 1.8, respectively. However, analysis of CRP binding to these cells and to peripheral blood leukocytes suggests that additional CRP receptor sites may be present. Because many studies have shown interactions between CRP binding and IgG binding to leukocytes, we have examined further the CRP binding sites on U-937 cells and determined their relationship to the FcR for IgG (Fc gamma R) expressed on these cells. Our results demonstrate specific saturable binding of CRP to peripheral blood monocytes and U-937 cells, which is readily inhibited by aggregated IgG. Monomeric IgG, which binds specifically to Fc gamma RI, inhibited a maximum of 20% of CRP binding to these cells. mAb 197 and mAb IV.3, which block IgG binding to Fc gamma RI and Fc gamma RII, respectively, failed to inhibit CRP binding to U-937 cells. Two CRP-binding molecules were identified by precipitation of lysates from surface-labeled U-937 cells and cross-linking experiments. One of these had a molecular mass of 43 to 45 kDa, similar to the molecule previously described as the CRPR on U-937 cells. The other had the same mobility by SDS-PAGE as Fc gamma RI. The identity of this protein with Fc gamma RI was confirmed by the ability of both IgG-Sepharose and CRP-Sepharose to preclear the protein from cell lysates and by inhibition of binding to both IgG-Sepharose and CRP-Sepharose by anti-Fc gamma RI mAb 197.  相似文献   

8.
9.
10.
p72 high affinity receptors (Fc gamma RI) for the Fc portion of IgG molecules on human peripheral blood monocytes mediate a variety of beneficial functions, but also have deleterious effects in certain clinical situations. In the present study, the photosensitizing porphyrins hematoporphyrin derivative and dihematoporphyrin ether (DHE), which are known to preferentially affect the cell membrane, were found to significantly inhibit binding of mouse IgG2a antibodies to the ligand binding site of Fc gamma RI on human peripheral blood monocytes and the U937 human monocytic cell line. Fc gamma RI receptors could be identified with a monoclonal antibody which recognizes an epitope distinct from the ligand binding site, indicating that photosensitization induced a structural alteration rather than loss of the receptor molecule from the cell surface. The effect of DHE and light appeared to be highly specific, since binding of monoclonal antibodies to other surface structures was not decreased. DHE plus light-induced modulation of Fc gamma RI was found to be mediated by superoxide anions, since addition of a mimic of superoxide dismutase restored both binding of mouse IgG2a to Fc gamma RI as well as human monocyte accessory cell function. These studies identify porphyrin photosensitization as a unique mechanism by which to selectively down-regulate Fc gamma RI-mediated functions.  相似文献   

11.
Different classes of receptors for the Fc moiety of IgG (Fc gamma R) have been defined on human monocytes and macrophages: Fc gamma RI, Fc gamma RII, and Fc gamma RIII. All three classes are capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Fc gamma RI, which binds monomeric human IgG (hIgG) with high affinity, was shown an effective cytotoxic trigger molecule on different types of cells. In vitro, the inhibition of Fc gamma RI-mediated ADCC by hIgG is well documented. The low affinity receptor classes, Fc gamma RII and Fc gamma RIII, are not blocked by monomeric hIgG. Because monomeric hIgG is present at high concentrations in plasma and interstitial fluids it has been postulated inhibitory in vivo. We investigated the effect of rIFN-gamma on macrophage Fc gamma RI-mediated ADCC in the presence of low doses hIgG. With human E sensitized with hIgG as target cells, Fc gamma RI was studied selectively. We found that rIFN-gamma enhances both expression and cell surface density of Fc gamma RI on cultured peripheral blood monocytes. Furthermore, this cytokine partially reversed the inhibitory effect of monomeric hIgG on ADCC. More interestingly, we found that the cytolytic mechanism of monocyte-derived macrophages changed completely after prolonged culture with rIFN-gamma. Monocytes cultured for 9 days in control medium mediate predominantly phagocytosis. After long term rIFN-gamma stimulation (9 days), monocyte-derived macrophages almost completely lost the capacity to perform phagocytosis. Interestingly, they became highly efficient in mediating extracellular lysis of human E sensitized with hIgG. Short term rIFN-gamma stimulated monocyte-derived macrophages (for the last 40 h of culture) were found to mediate both phagocytosis and extracellular lysis. Our findings suggest that in vivo rIFN-gamma-stimulated macrophages may be most efficient in Fc gamma RI-mediated cytolysis as a consequence of a changed cytolytic mechanism in combination with enhanced Fc gamma RI density.  相似文献   

12.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

13.
At physiologic and therapeutic concentrations, glucocorticoids decrease the number of Fc receptors for IgG (Fc gamma R) on human monocyte-like cell lines. In comparison, gamma-interferon (IFN-gamma) increases Fc gamma R expression on both human monocytes and monocyte-like cell lines. In this study, we examined the combined effects of glucocorticoids and IFN-gamma on human monocyte expression of the high affinity (72 kDa) Fc gamma R. Mononuclear cells prepared from heparinized venous blood of normal donors were treated for up to 90 hr with or without recombinant IFN-gamma and/or steroids. Monocyte Fc gamma R were measured by Scatchard analysis of the binding of human monomeric 125I-IgG1; indirect immunofluorescence plus flow cytometry, utilizing a monoclonal antibody (MoAb 32) which is specific for the high affinity Fc gamma R; and direct immunofluorescence using fluorescein isothiocyanate-labeled human monomeric IgG1 and flow cytometry quantitated using U-937 cells as a standard. Cultured monocytes incubated in the presence of both glucocorticoids and IFN-gamma for 18 hr had significantly higher (p less than 0.01) Fc gamma R levels than monocytes treated with IFN-gamma alone. The effect of combined treatment reached a plateau by 42 hr of incubation without increasing expression of other surface markers tested. Treatment with glucocorticoids alone did not consistently decrease monocyte Fc gamma R levels after either 18 or 42 hr of culture. Only glucocorticoids augmented the IFN-gamma increase in Fc gamma R; other steroids tested had no effect on IFN-gamma action. Furthermore, the effect was observed after treatment with only one type of interferon, IFN-gamma. These results describe a glucocorticoid immunoregulatory effect that may explain why combined IFN-gamma plus glucocorticoid treatment enhances mononuclear phagocyte Fc-mediated functions.  相似文献   

14.
Y Ohta  T P Stossel  J H Hartwig 《Cell》1991,67(2):275-282
The high affinity receptor that binds the Fc domain of immunoglobulin G (IgG) subclasses 1 and 3 (Fc gamma RI) mediates important immune defense functions by inducing cell surface changes on human leukocytes. In this article, we document direct high affinity binding of Fc gamma RI to the actin filament cross-linking protein, actin-binding protein (ABP). In the absence of IgG, all Fc gamma RI molecules in undifferentiated cells of myeloid line U937 bound to ABP over a 9-fold range of Fc gamma RI expression induced by human IFN-gamma. Binding of IgG to U937 cells constitutively expressing Fc gamma RI or to COS cells genetically transfected to express Fc gamma RI rapidly decreased the avidity of Fc gamma RI for ABP. This finding suggests the existence of a pathway communicating a signal between a functional IgG receptor and intracellular components involved in the effector responses to Fc gamma RI-ligand interaction.  相似文献   

15.
Human monocytes express two types of IgG FcR, Fc gamma RI and Fc gamma RII. These can be assayed by using indicator E sensitized by human IgG (EA-human IgG) or mouse IgG1, (EA-mouse IgG1), respectively. On mouse macrophages, Fc gamma RI is sensitive to trypsin, whereas Fc gamma RII is trypsin resistant. We studied the effects of the proteolytic enzymes pronase and trypsin on human monocyte Fc gamma R. Neither enzyme caused a decrease in rosetting mediated by monocyte Fc gamma RI. Human Fc gamma RII is polymorphic, and monocytes interact either strongly or weakly with mouse IgG1. The interaction of low responder monocytes with mouse IgG1 was dramatically increased (to the level exhibited by high responder monocytes) by protease treatment. The effects of proteases on Fc gamma RII were investigated in more detail by using monocytes from which Fc gamma RI was selectively modulated by using immobilized immune complexes. Proteolysis of such modulated monocytes induced an increased interaction with EA-human IgG. Fc gamma RII appears to mediate this interaction. This conclusion is supported by the observation that after proteolysis, the Fc gamma RII-mediated binding of EA-mouse IgG1 becomes susceptible to inhibition by (monomeric) human IgG. To quantify the effect of proteolytic enzymes on Fc gamma RII, we performed binding studies with cell line K562, that expresses only Fc gamma RII. A significant increase in Ka of Fc gamma RII for dimeric human IgG complexes was observed when K562 cells were treated with protease. To elucidate the mechanism of this enhancement of Ka by proteolysis, we performed immunoprecipitation studies. Neither m.w., nor IEF pattern of Fc gamma RII were influenced by proteolysis. Moreover, the expression of Fc gamma RII was not affected by proteolysis as evidenced by immunofluorescence studies and Scatchard analysis, and neither were Fc gamma RI or Fc gamma RIII induced. We conclude that proteolysis increases the affinity of Fc gamma RII for human IgG, and speculate that such a proteolysis-induced change may also occur in vivo, e.g., at inflammatory sites.  相似文献   

16.
Human monoblastic/monocytic leukemia cell lines U937, THP-1, Mono-Mac-6, and blood monocytes were incubated with various concentrations of human rIL-6 and other cytokines and analyzed for their capacity to bind several anti-Fc epsilon RII/CD23 mAb. A marked and dose-dependent increase in the percentage of CD23+ cells, as well as in the mean channel fluorescence intensity, as demonstrated by FACS analysis, was noted after 8- to 72-h incubation of U937 cells with 1 to 1000 U/ml of human rIL-6. Furthermore, rIL-4 synergized with rIL-6 and rIFN-tau in augmenting the Fc epsilon RII expression on U937 cells, whereas rIFN-tau and rIL-6 showed rather additive effects. The enhancement of CD23 expression on IL-6-treated U937 cells was blocked by anti-IL-6 antibodies. Northern blot analysis, employing cDNA probes for Fc epsilon RII, showed that U937 cells contain Fc epsilon RII-specific mRNA. The level of Fc epsilon RII-encoding mRNA was evidently increased by treatment of U937 cells with human rIL-6, rIL-4, or with rIL-6 + rIL-4. The expression of CD23 on THP-1 and Mono-Mac-6 cells was increased slightly by rIL-6 and markedly by rIL-4, rIFN-tau, or a mixture of them. Approximately 14% of blood monocytes, isolated from apparently healthy donors, constitutively possess Fc epsilon RII. In contrast to the cell lines, the Fc epsilon RII density and the percentage of blood monocytes bearing Fc epsilon RII was not augmented by IL-6. Furthermore, rIL-6, and more evidently rIFN-tau, down-regulate rIL-4-driven Fc epsilon RII expression on monocytes but not on monocytic cell lines. Our findings point to differences in the capability of mononuclear phagocytes to respond to cytokine treatment, which may be differentiation dependent, and suggest separate regulatory pathways.  相似文献   

17.
《MABS-AUSTIN》2013,5(5):848-860
ABSTRACT

The maintenance of the homeostasis of immunoglobulin G (IgG) represents a fundamental aspect of humoral immunity that has direct relevance to the successful delivery of antibody-based therapeutics. The ubiquitously expressed neonatal Fc receptor (FcRn) salvages IgG from cellular degradation following pinocytic uptake into cells, conferring prolonged in vivo persistence on IgG. However, the cellular sites of FcRn function are poorly defined. Pinocytic uptake is a prerequisite for FcRn-mediated IgG salvage, prompting us to investigate the consequences of IgG uptake and catabolism by macrophages, which represent both abundant and highly pinocytic cells in the body. Site-specific deletion of FcRn to generate mice harboring FcRn-deficient macrophages results in IgG hypercatabolism and ~threefold reductions in serum IgG levels, whereas these effects were not observed in mice that lack functional FcRn in B cells and dendritic cells. Consistent with the degradative activity of FcRn-deficient macrophages, depletion of these cells in FcRn-deficient mice leads to increased persistence and serum levels of IgG. These studies demonstrate a pivotal role for FcRn-mediated salvage in compensating for the high pinocytic and degradative activities of macrophages to maintain IgG homeostasis.  相似文献   

18.
The human monocyte and macrophage Fc receptor that binds human IgG with high affinity is a surface glycoprotein with a relative molecular mass of approximately 70 kDa. This receptor (Fc gamma RI) has been partially characterized using mAb 32 which binds outside the Fc binding domain of the receptor, but nonetheless triggers Fc receptor-dependent functions. In this study, we describe the properties of four new antibodies with specificity for Fc gamma RI. Based on additivity and cross-blocking studies, we conclude that two of these antibodies (mAb 22 and 44) define a third epitope which is distinct from the binding sites for both mAb 32 and the Fc portion of human IgG. Each Fc gamma RI-specific hybridoma was selected for stable sublines expressing high levels of mAb on the cell surface, and then tested for the ability of this surface mAb to trigger antibody-dependent cell cytotoxicity. All sublines were killed by human monocytes when used as targets in a 51Cr-release assay, whereas hybridomas specific for myeloid Ag other than Fc gamma RI were not killed. We conclude that Fc receptor function is triggered through binding to each of the three epitopes of Fc gamma RI that we have defined. These mAb will be useful for additional characterization of Fc gamma RI, and may, when incorporated into tumor-directed heteroantibodies, enhance tumor cell killing by human monocytes and macrophages.  相似文献   

19.
The three types of IgG FcR (Fc gamma RI, Fc gamma RII, Fc gamma RIII) on human leukocytes play an important role in elimination of antibody-coated infectious agents. To further understand the role of the different Fc gamma R in mediating this killing, we examined the ability of human myeloid and lymphoid cells to kill the protozoan Toxoplasma gondii in the presence of antitoxoplasma IgG or bispecific antibodies. Although human myeloid cells (monocytes, macrophages, neutrophils, and eosinophils) all lysed unsensitized T. gondii, killing by these cells was significantly enhanced by opsonization with antitoxoplasma rabbit IgG. Human lymphocytes, however, did not lyse T. gondii unless the parasites were coated with antibody. The role of antibody and Fc gamma R in mediating ADCC of T. gondii was then examined using bispecific antibodies made by chemically cross-linking Fab fragments of antitoxoplasma antibodies to Fab fragments of antibodies specific for human leukocyte surface Ag, including Fc gamma R. Thus, simultaneous binding of these bispecifics to parasites and effector cells allowed an evaluation of killing when T. gondii were targeted to each Ag independently. Bispecifics which targeted T. gondii to Fc gamma RI, II or III enhanced lysis by monocytes. However, similar results were obtained with bispecifics targeting T. gondii to non-Fc gamma R Ag (CD11b or beta 2-microglobulin) on monocytes. Likewise, polymorphonuclear leukocytes mediated significantly more lysis in the presence of bispecifics linking T. gondii to Fc gamma RII, Fc gamma RIII, or the two non-Fc gamma R Ag CD11b and beta 2-microglobulin. Thus, although human myeloid cells did not require antibody-Fc gamma R triggering to kill T. gondii, antibody appeared to enhance lysis by capturing and directing the parasites to the effector cell surface. Human lymphocytes, in contrast, mediated significant lysis of T. gondii only in the presence of bispecifics targeting T. gondii to Fc gamma RIII, indicating a requirement for specific triggering of Fc gamma RIII for killing by large granular lymphocytes. Consequently, using bispecifics to compare targeting to specific Ag, both non-Fc gamma R and Fc gamma R, allowed determination of the role of antibody-Fc gamma R interactions in T. gondii killing. In addition, these studies demonstrate the potential of bispecifics in determining the role of specific Ag in killing of or infection by pathogens.  相似文献   

20.
IL-4 has multiple biologic activities and it has been shown to have effects on B and T lymphocytes, mast cells, NK cells, and monocytes. We studied the influence of IL-4 on the expression of cell membrane determinants, in particular aminopeptidase-N (CD13) and Fc epsilon RIIb (CD23), on human peripheral blood monocytes. We compared the response of monocytes with the response of human alveolar macrophages and monocytic cell lines (U937 and THP1), as mature and more immature representatives of the mononuclear phagocyte system, respectively. A dose-dependent increase of the expression of CD13 Ag was observed when monocytes were cultured with IL-4. Kinetic analyses revealed that this induction was maximal after 2 to 3 days of culture and resembled the kinetics of IL-4-induced expression of Fc epsilon RIIb on monocytes. This IL-4-induced increase was absent when monocytes were cultured with IL-4 and an anti-IL-4 antiserum. Concomitantly, an IL-4-induced increase in leucine-aminopeptidase activity could be observed. Northern blot analysis showed that incubation of monocytes with IL-4 induced a marked increase in CD13 mRNA. Alveolar macrophages also exhibited an increase in CD13 Ag expression when exposed to IL-4. Surprisingly, IL-4 was unable to induce expression of Fc epsilon RIIb on alveolar macrophages. U937 and THP1 cells did not show an induction of CD13 Ag when cultured in the presence of IL-4. However, IL-4 did induce the expression of Fc epsilon RIIb on both cell lines, suggesting the presence of functional IL-4R. Our data demonstrate that IL-4 increases the expression of CD13 Ag on monocytes. This IL-4-induced increase can also be observed in more mature monocytic cells such as alveolar macrophages, but is absent in immature cells such as U937 or THP1 cells. This is functionally accompanied by an increase in leucine-aminopeptidase activity and may be part of the general activation of monocytes/macrophages by IL-4. In conclusion, the data suggest that IL-4 responsiveness, in particular the induction of CD13 Ag and Fc epsilon RIIb expression, may be dependent on the stage of maturation of monocytes/macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号