首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In soft-bottom sediments, consumers may influence ecosystem function more via engineering that alters abiotic resources than through trophic influences. Understanding the influence of bioturbation on physical, chemical, and biological processes of the water–sediment interface requires investigating top-down (consumer) and bottom-up (resource) forces. The objective of the present study was to determine how consumer bioturbation mode and sediment properties interact to dictate the hydrologic function of experimental filtration systems clogged by the deposition of fine sediments. Three fine-grained sediments characterized by different organic matter (OM) and pollutant content were used to assess the influence of resource type: sediment of urban origin highly loaded with OM and pollutants, river sediments rich in OM, and river sediments poor in OM content. The effects of consumer bioturbation (chironomid larvae vs. tubificid worms) on sediment reworking, changes in hydraulic head and hydraulic conductivity, and water fluxes through the water–sediment interface were measured. Invertebrate influences in reducing the clogging process depended not only on the mode of bioturbation (construction of biogenic structures, burrowing and feeding activities, etc.) but also on the interaction between the bioturbation process and the sediments of the clogging layer. We present a conceptual model that highlights the importance of sediment influences on bioturbation and argues for the integration of bottom-up influence on consumer engineering activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The effects of chironomid larvae,Chironomus plumosus, and tubificid worms,Limnodrilus spp., on particle redistribution in lake sediment were investigated experimentally using pots containing sediments obtained from Lake Suwa, Japan. The chironomids and tubificids increased the water content of surface sediment. The chironomid larvae had no effect on particle size distribution, while tubificids continuously accumulated small particles on the surface sediment through their selective feeding activity. Particles larger than 0.125 mm were buried at a sediment depth of 6 cm. In Lake Suwa, long diatom frustules, large plant debris and blue-green algal flocs were found to accumulate in the deeper layer of the lake sediment inhabited by tubificids at high density.  相似文献   

3.
The present study aimed to experimentally quantify the influence of a reduction of surface sediment permeability on microbial characteristics and ecological processes (respiration and leaf litter decomposition) occurring in the hyporheic zone (i.e. the sedimentary interface between surface water and groundwater). The physical structure of the water–sediment interface was manipulated by adding a 2-cm layer of coarse sand (unclogged systems) or fine sand (clogged systems) at the sediment surface of slow filtration columns filled with a heterogeneous gravel/sand sedimentary matrix. The influence of clogging was quantified through measurements of hydraulic conductivity, water chemistry, microbial abundances and activities and associated processes (decomposition of alder leaf litter inserted at a depth of 9 cm in sediments, oxygen and nitrate consumption by microorganisms). Fine sand deposits drastically reduced hydraulic conductivity (by around 8-fold in comparison with unclogged systems topped by coarse sand) and associated water flow, leading to a sharp decrease in oxygen (reaching less than 1 mg L−1 at 3 cm depth) and nitrate concentrations with depth in sediments. The shift from aerobic to anaerobic conditions in clogged systems favoured the establishment of denitrifying bacteria living on sediments. Analyses performed on buried leaf litter showed a reduction by 30% of organic matter decomposition in clogged systems in comparison with unclogged systems. This reduction was linked to a negative influence of clogging on the activities and abundances of leaf-associated microorganisms. Finally, our study clearly demonstrated that microbial processes involved in organic matter decomposition were dependent on hydraulic conductivity and oxygen availability in the hyporheic zone.  相似文献   

4.
1. The hyporheic zone plays a key role in hydrological exchange and biogeochemical processes in streambed sediments. The clogging of sediments caused by the deposition of particles in the bed of streams and rivers can decrease sediment permeability and hence greatly affect hyporheic microbial processes. 2. The main objective of this study was to determine the influence of sediment clogging on hyporheic microbial processes in three French rivers (the Usses, Drôme and Isère). In each river, microbial abundance and activity were studied at three depths (10, 30 and 50 cm) in the sediment at one unclogged (high porosity) and one clogged site (low porosity). 3. The results showed that the sediment clogging had inconsistent effects on microbial processes in the three rivers. Increases (Usses) or decreases (Drôme and Isère) in both aerobic and anaerobic processes were detected at the clogged sites compared to unclogged sites. These results suggest that microbial changes because of the sediment clogging are mainly mediated by the residence time of water within the hyporheic sediments. 4. A single model predicting the effect of clogging on hyporheic microbial processes cannot be applied generally to all rivers because the degree of clogging creates heterogeneous effects on flow rates between surface and interstitial waters. As a consequence, the influence of heterogeneous clogging on surface water–hyporheic exchanges needs to be evaluated by water tracing and hydraulic modelling to determine the links between microbial processes and hydraulic heterogeneity induced by clogging in hyporheic sediments.  相似文献   

5.
水丝蚓对太湖沉积物有机磷组成及垂向分布的影响   总被引:5,自引:0,他引:5  
白秀玲  周云凯  张雷 《生态学报》2012,32(17):5581-5588
以太湖常见底栖动物——水丝蚓为研究对象,借助室内流动培养装置和31P核磁共振技术(phosphorus-31 nuclearmagnetic resonance spectroscopy)(31P-NMR),研究生物扰动对太湖沉积物有机磷组成及垂向分布的影响。结果表明:短时间内水丝蚓扰动对沉积物有机磷化合物种类组成影响并不显著,但会引起上层沉积物中稳定性较差的有机磷化合物磷脂和DNA含量出现显著降低,同时沉积物中总磷和有机磷的垂向分布亦发生明显改变。此外,水丝蚓扰动下沉积物含水率、孔隙率和碱性磷酸酶活性显著增加,使活性较高的有机磷化合物分解加速,最终导致表层沉积物中的磷脂与DNA含量降低。  相似文献   

6.
1. Our objective was to measure the effects of bioturbation and predation on the physical characteristics and biogeochemical processes in river sediments. 2. We investigated the impacts of tubificid worms tested separately and together with an omnivore (Gammarus pulex), which does feed on tubificids, on sediment distribution, water flux, sediment organic carbon, biofilm biomass and microbial activities, and the concentrations of dissolved oxygen, dissolved organic carbon, PO, NO, NO and NH in slow filtration sand–gravel columns. We hypothesised that gammarids, which exploit the top 2–3 cm of the sediment, would modify the impact of worms at the sediment surface. 3. In experiments both with and without gammarids, bioturbation by the tubificids modified both the distribution of surface particles in the sediment column and water flux. In addition, microbial aerobic (oxygen consumption) and anaerobic (denitrification and fermentative decomposition of organic matter) processes in the sediment were stimulated in the presence of tubificid worms. However, G. pulex did not affect either the density or bioturbation activity of the tubificid worms. 4. Bioturbation by the benthos can be a major process in river habitats, contributing to the retention of organic matter in sediment dynamics. The presence of at least one predator had no effect on bioturbation in sediments. In such systems, physical heterogeneity may be sufficient for tubificids to escape from generalist predators, though more specialised ones might have more effect.  相似文献   

7.
生物扰动对沉积物中污染物环境行为的影响研究进展   总被引:4,自引:0,他引:4  
生物扰动由于显著改变沉积物结构和性质,进而影响沉积物中污染物的环境行为。综述生物扰动对沉积物中氮、磷、重金属和疏水性有机污染物环境行为的影响。生物扰动促进这些污染物从沉积物向水体释放。生物扰动还对不同的污染物产生其它不同的影响。对于氮,生物扰动还影响其硝化与反硝化作用;对于磷,生物扰动不仅改变其化学形态,还提高有机磷降解。对于重金属,生物扰动还能改变其在沉积物中的分布及化学形态。对于疏水性有机污染物,生物扰动主要增强生物富集和代谢,以及提高生物降解。  相似文献   

8.
Colmation refers to the retention processes that can lead to the clogging of the top layer of channel sediments and decolmation refers to the resuspension of deposited fine particles. Internal colmation, clogging of the interstices directly below the armor layer, may form a thin seal that disconnects surface water from hyporheic water by inhibiting exchange processes. The settling of particles under low flow conditions can cause external colmation. Colmated channel sediments are characterized by reduced porosity and hydraulic conductivity as well as by a consolidated texture. The term ‘depth filtration’ refers to the transport and storage of fine matrix sediments in interstitial layers. Depth filtration is of significance for the transport of colloidal and fine particulate inorganic as well as organic matter within the hyporheic interstices and into the alluvial aquifer. The role of depth filtration is assessed for the content (given in mg per liter) of matrix fine particles retained in the coarse framework sediment of a gravel-bed river in Switzerland. Sediment samples were taken by freeze-coring with liquid nitrogen down to 70 cm depth and by piezometers down to 150 cm depth. Seventy-two percent of the mobile matrix fine particles were smaller than 0.1 mm and 50% were smaller than 0.03 mm. The content of fines tended to increase with depth, although higher accumulations were found at intermediate depths in sediments influenced by exfiltrating ground water. Interstitial detrital particles >90 μm showed vertical distribution patterns opposing those of total particles. These relationships revealed a differential significance of import, storage, and transport within three types of hydrological exchange zones (infiltration, horizontal advection, exfiltration) in the cross-section of the stream.  相似文献   

9.
While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m2 was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming.  相似文献   

10.
Schälchli  Ueli 《Hydrobiologia》1992,(1):189-197
Laboratory investigations were carried out to examine the clogging process in coarse gravel river beds. Field samples taken from the Langeten river in Switzerland show that the intruded fine particles of the flow are deposited in the top layer of the river bed. For lower discharges the decrease of the hydraulic conductivity depends mainly on the dimensionless shear stress of the flow, the concentration of the suspended load, the hydraulic gradient between river and groundwater and the grain-size distribution of the river bed. However, when the armour layer breaks up during high discharges and the whole river bed is mobilized, the deposited fines are flushed downstream and a new layer with an initial maximum hydraulic conductivity is formed. The relationship between the dimensionless shear stress and the hydraulics conductivity is discussed. Changes in the nature of the catchment area or in the river itself which can accelerate the clogging process in the affected river are also discussed.  相似文献   

11.
1. Bioturbation, by definition, changes the structure and properties of sediments, thereby altering the environment of the bioturbator and other benthic species. In addition to the indirect effects of sediment reworking (e.g. changes in water quality), bioturbating species may also directly interfere with other species via competition. This study aims, therefore, to examine both the direct and indirect effects of sediment reworking by an opportunistic detritivore on survival and growth of a specialised mayfly species. 2. Bioturbation was imposed by adding different densities of the midge Chironomus riparius to clean and polluted sediments. Changes in water quality and sediment properties, and survival and growth of the mayfly Ephoron virgo were assessed. 3. Chironomid density had a strong negative effect on the concentrations of metals, nutrients and particles in the overlying water, but increased the penetration of oxygen into the sediment. Survival and growth of E. virgo were strongly reduced in the presence of chironomids. In the polluted sediment, the activity of chironomids enhanced the negative effects of pollution on E. virgo. In the clean sediment, inhibition of the mayfly was even more pronounced. 4. This suggests that direct disturbance by C. riparius was more important than indirect changes in water quality, and over‐ruled the potential positive effects of improved oxygen penetration. The results indicated that the distribution of small insects, such as E. virgo, can be limited by bioturbating benthic invertebrates.  相似文献   

12.
13.
During rainfall events, macropores are generally considered to play a dominant role in infiltration after matrix ponding has occurred. Once ponding has been initiated on the soil matrix, surface runoff may be generated at rainfall intensities less than the saturated hydraulic conductivity of the soil. The amount of runoff will depend on detention storage and how efficiently the surface flow is captured by soil macropores. The efficiency of surface water removal by macropores is diminished if surface vents become clogged sealed by washed-in sediment during the runoff event. Post-event opening of surface vents by the animals that created them can remove evidence of the sealing process and so it is particularly important to examine the temporal stability of the soil surface during rainfall events. In this paper evidence of macropore clogging and post-event clearing of the surface vents is presented. A fine sandy loam passed through a 2 mm diameter sieve was packed into two boxes, each with a surface area of 0.5 m2. The boxes were irrigated at 28 mm h−1 using a low energy rainfall sprinkler. This application rate exceeded the saturated hydraulic conductivity of the soil matrix. After measuring runoff and infiltration from the boxes, one box was held as a control and the second was inoculated with earthworms. After four weeks the inoculated box had a burrow density at the soil surface of 380 m−2, with an average diameter of 5 mm. Macropore sealing occurred immediately after ponding and runoff from the macroporous soil was only 10.7% less than a control with no macropores. Within 24 h after cessation of simulated rainfall the earthworms had cleared washed in material from over 95% of burrow vents. Time to matrix ponding was well predicted using hydraulic parameters characteristic of the soil matrix, indicating that matrix sealing was not significant under the experimental conditions.  相似文献   

14.
Phosphorus release from the sediments of very shallow lakes, the Norfolk Broads, can be as high as 278 mgP m-2 d-1. These high rates are associated with high total sediment Fe:P ratios and occur when sulphide from sulphate reduction removes Fe(II) from the pore water. There is also evidence that bioturbation from benthic chironomids can enhance phosphorus release rates, particularly in sediments low in total iron. The release of phosphorus from the sediments of these lakes is delaying restoration following the control of phosphorus from sewage discharges. Biomanipulation is being used in these lakes to create clear water and re-establish aquatic macrophytes. This removal of fish has allowed larger populations of benthic chironomid larvae to develop which may result in an increase in the rate of phosphorus release and changes to the pore profiles of dissolved phosphorus, soluble iron and free sulphide.  相似文献   

15.
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.  相似文献   

16.
An in-situ study was conducted in Lake Arendsee to study the influence of macrozoobenthos on pore water phosphate concentrations, and to investigate the importance of macrozoobenthos in causing small-scale heterogeneity. Two-dimensional pore water samplers with a high spatial resolution were exposed for 14 days at two sampling points with different water depths. Macrozoobenthos densities and the corresponding pore water phosphate concentrations were determined. In profundal sediments with chironomids (mean density: 480 m−2) the pore water phosphate concentration showed more patchiness (heterogeneity index 0.69) than in sediments without chironomids (heterogeneity index 0.38). Macrozoobenthos might affect the sediment environment mainly through bioirrigation, bioturbation, secretion, and digestion. It is most likely that the hot spots are caused by secretions from chironomids which intensify the microbially mediated P-release. The small-scale horizontal heterogeneity of pore water concentrations due to macrozoobenthos activities is insufficiently considered in many limnological studies focusing on vertical changes of pore water concentrations to investigate biogeochemical processes in sediment and to estimate internal nutrient loading. In sediments inhabited by macrozoobenthos the number of replicates should be high due to the extreme variability of single profiles of the two-dimensional sampler, as well as of averaged profiles simulating classical one-dimensional pore water analysis techniques. In cases where the profundal sediment is macrozoobenthos-free, single deployments of one-dimensional pore water samplers are well suited to describing pore water chemistry. Thus, determination of macrozoobenthos density is essential for study design.  相似文献   

17.
We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g. luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2 day?1, such as triggered by intermediate density (774 m?2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2 day?1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution.  相似文献   

18.
This study assessed the effects of food supply on sediment reworking by Nereis diversicolor. We hypothesized that food supply would enhance sediment reworking and that the frequency of food supply would affect the intensity of bioturbation. Mesocosm experiments consisted of four treatments: (1) without worms (control cores), (2) with worms and no food supply, (3) with worms and daily food supply, (4) with worms and weekly food supply. Fluorescent particles, used as tracers, were spread over the sediment surface. Sediment reworking was quantified after 28 days based on the tracer distribution profiles. Results showed that sediment reworking by N. diversicolor was exclusively due to non-local transport processes. Food supply greatly increased non-local transport coefficients (more than 3 times) in comparison with those measured in the absence of a food supply. However, the intensity of sediment bioturbation by these worms was unaffected by the frequency of food supply. This study showed that environmental conditions affecting the quantity of food supply at the water-sediment interface could strongly influence bioturbation process. Handling editor: P. Viaroli  相似文献   

19.
Invasive species may impact biotic community structure, ecosystem processes, and associated goods and services. Their impact may be especially strong when they also serve as ecosystem engineers (i.e. organisms affecting the physical habitat and resources for other species). Dreissenid mussels fill both these roles, having invaded the Laurentian Great Lakes in the late 1980s, and also serve as ecosystem engineers by altering nutrient fluxes and influencing the microbial food web through direct nutrient release and excretion of feces and pseudo‐feces at the water–sediment interface. We conducted laboratory experiments to investigate how the different functional traits of invasive quagga mussels (filtering activity and direct nutrient release) and native chironomid larvae (tube building and bioirrigation) interact with lake sediment of differing organic matter content to influence biogeochemical fluxes and water quality. Our results showed that sediment reworking and ventilation activities by chironomid larvae increased oxygen penetration in the sediment, affecting primarily pore water chemistry, whereas invasive mussels enhanced nutrient releases in the surface water. However, sediment organic matter modulated the effects of ecosystem engineers on system‐level processes; chironomids had a greater influence on sediment reworking and microbial‐mediated processes in organic‐rich sediments, whereas quagga mussels enhanced nutrient concentrations in the overlying water of organic‐poor sediments. These results have management implications, as the effects of invasive mussels on the biogeochemical functioning in the Great Lakes region and elsewhere can alter system bioenergetics and promote harmful algal blooms.  相似文献   

20.
1. A substantial portion of particulate organic matter (POM) is stored in the sediment of rivers and streams. Leaf litter breakdown as an ecosystem process mediated by microorganisms and invertebrates is well documented in surface waters. In contrast, this process and especially the implication for invertebrates in subsurface environments remain poorly studied. 2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on hydrodynamics and habitability for invertebrates. We expected that the influence of shredders on organic matter breakdown in river sediments would be influenced strongly by the physical structure of the interstitial habitat. 3. To test this hypothesis, the influence of gammarids (shredders commonly encountered in the hyporheos) on degradation of buried leaf litter was measured in experimental systems (slow filtration columns). We manipulated the structure of the sedimentary habitat by addition of sand to a gravel‐based sediment column to reproduce three conditions of accessible pore volume. Ten gammarids were introduced in columns together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves were collected after 28 days to determine leaf mass loss and associated microbial activity (fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase activities). 4. As predicted, the consumption of buried leaf litter by shredders was strongly influenced by the sediment structure. Effective porosity of 35% and 25% allowed the access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a consequence, leaf litter breakdown rates in columns with 35% and 25% effective porosity were twice as high as in the 12% condition. Microbial activity was poorly stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a direct effect of gammarids through feeding activity. 5. Our results show that breakdown of POM in subsurface waters depends on the accessibility of food patches to shredders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号