首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Many passerine medium distance nocturnal migrants take off from stopover sites not only at the beginning of the night, but also in the middle and at the end of the night. In this paper, we tested two explanations for this phenomenon: (1) that departure time is governed by fuel stores, and (2) that departure time is influenced by the weather. The relationship of temporal distribution of migratory nocturnal departures with body condition and weather factors was studied in juvenile European robins (Erithacus rubecula) during autumn migration. The study was done on the Courish Spit on the Baltic Sea in 1997–2003 by retrapping 74 ringed birds in high mist nets during nocturnal migratory departure. Departure time was not related to fuel stores at arrival and departure, stopover duration, fuel deposition rate or progress of the season. Nor did the local weather at departure influence departure time. A possible reason was a large variation in the behaviour of the birds. European robins which made 1-day stopovers arrived and departed during better weather conditions than birds that stopped over for longer periods. In the former cohort, a significant model with four predictors explained 55% of variation in departure time. It is assumed that weather at the night of departure and during the previous night influenced the time of take-offs in these birds. In robins which made long stopovers, departure time is probably governed by their individual endogenous circadian rhythms of activity, which are related to the environment in a complex way.  相似文献   

2.
Early arrival at the breeding site positively affects the breeding success of migratory birds. During migration, birds spend most of their time at stopovers. Therefore, determining which factors shape stopover duration is essential to our understanding of avian migration. Because the main purpose of stopover is to accumulate fat as fuel for the next flight bout, fuel reserves at arrival and the accumulation of fuel are both expected to affect stopover departure decisions. Here, we determined whether fuel reserves and fuel accumulation predict a bird''s motivation to depart, as quantified by nocturnal migratory restlessness (Zugunruhe), using northern wheatears (Oenanthe oenanthe) that were captured and temporarily contained at spring stopover. We found that fuel reserves at capture were positively correlated with Zugunruhe, and negatively correlated with fuel accumulation. This indicates that fat birds were motivated to depart, whereas lean birds were set on staying and accumulating fuel. Moreover, the change in fuel reserves was positively correlated with the concurrent change in Zugunruhe, providing the first empirical evidence for a direct link between fuel accumulation and Zugunruhe during stopover. Our study indicates that, together with innate rhythms and weather, the size and accumulation of fuel reserves shape stopover duration, and hence overall migration time.  相似文献   

3.
A limitation of standardized mist netting for monitoring migration is caused by the lack of knowledge about the relationship between trapped birds and birds flying aloft. Earlier studies related nocturnal radar counts with trapping data of the following day. In this study, we compared for the first time data gathered simultaneously by radar and mist netting, separately for diurnal and nocturnal migration. Trapping numbers were strongly correlated with migratory intensities measured by radar (r>0.6). A multiple regression analysis, including wind speed and wind direction explained 61% of variation in the number of captures. During the night, and particularly with favourable winds, birds flew at higher altitudes and hence escaped the nets to a higher proportion. The number of nocturnal migrants trapped during daytime was well correlated with migratory intensities observed by radar in the preceding night. The diurnal time patterns, however, revealed fundamental differences between trapping counts and radar observations. This was mainly due to increasing and decreasing flight altitudes in the course of the night, and by the limitations of the radar technique that underestimates migratory intensities during the day when birds aggregate in flocks. In relation to the migratory intensity recorded by radar, diurnal migrants are trapped in a much higher proportion than nocturnal migrants. Finally, our results confirm that trapping data from a site hardly used for stopover are well suited to represent the ongoing migration during the day and night.  相似文献   

4.
Several species of diurnal birds are nocturnal migrants. The activation of nocturnal activity requires major physiological changes, which are essentially unknown. Previous work has shown that during migratory periods nocturnal migrants have reduced night-time levels of melatonin. Since this hormone is involved in the modulation of day-night rhythms, it is a good candidate regulator of nocturnal migratory activity. We studied whether melatonin levels change when nocturnally active blackcaps (Sylvia atricapilla) are experimentally transferred from a migratory to a non-migratory state. We simulated a long migratory flight by depriving birds of food for 2 days, and a refuelling stopover by subsequently re-administering food. Such a regimen is known to induce a reduction in migratory restlessness ('Zugunruhe') in the night following food reintroduction. The experiments were performed in both autumn and spring using blackcaps taken from their breeding grounds (Sweden) and their wintering areas (Kenya). In autumn, the food regimen induced a suppression of Zugunruhe and an increase in melatonin in the night following food reintroduction. In spring, the effects of the treatment were qualitatively similar but their extent depended on the amount of body-fat reserves. This work shows that the reduction of night-time melatonin during migratory periods is functionally related to nocturnal migration, and that fat reserves influence the response of the migratory programme to food deprivation.  相似文献   

5.
In migratory songbirds, older individuals are thought to be more efficient migrants than younger individuals. Age‐specific differences in migratory efficiency have been reported mainly in respect of arrival timing, energy stores, rate of energy accumulation, departure behaviour, and departure direction. Yet, these traits were rarely assessed simultaneously in a single species. We further lack information whether age‐specific differences in behavioural traits present in autumn still manifest to the same degree in spring. Here we used the northern wheatear Oenanthe oenanthe, a long‐distance nocturnal songbird migrant, and investigated age‐specific differences in energy stores at capture (autumn: 1059 birds/spring: 803 birds), rate of energy accumulation (168/147), nocturnal departure timing (126/105), and departure direction (94/77) for both seasons. We found that in autumn, young northern wheatears departed significantly later in the night than older birds. This difference was not observed in spring. The resulting advance in nocturnal departure timing by young birds from autumn to spring may be due to learning based on experience gained during autumn, and/or to selective disappearance of those young individuals showing late departure times during autumn. We found no age‐specific difference in any of the other migratory traits investigated. To get a better understanding of age effects in songbird migrants, we need to study the potential adjustments of migratory behaviour within the individual over its life time. By individually tracking songbirds throughout their lifetime, we could start estimating whether a certain migratory decision (fuelling, departure, orientation) translates into higher (or lower) fitness, and whether individuals adjust their migratory behaviour based on learning from ‘wrong decisions’.  相似文献   

6.
Migratory species may be especially sensitive to climate change because their lifecycles are affected by dynamic ecological processes operating at global spatial scales. Insight into environmental effects upon en route decisions by migrants can therefore be a critical first step toward assessing their vulnerability to future climatic shifts. We extracted behaviour-related parameters from a recent formulation of multistate mark–recapture models, and used them to evaluate the importance of variation in local weather and broad-scale climate to decisions made by autumn passerine migrants at a coastal stopover site in Atlantic Canada. We found dramatic interannual fluctuations in the proportion of migrants that were transient (departing within a day of arrival), with annual average values ranging from 24% to 96% over the years 1996–2007. However, the relationships of stopover behaviour (transience and departure probability) to local weather (wind and precipitation) and to regional climatic fluctuations were similar across three distinct species groups and for birds of different fuel-loads, indicating the potential for both immediate (day-to-day) and long-term environmental influences (spanning several seasons). This cross-scale approach contributes valuable information toward the conservation of migrants in the face of a changing climate by (i) quantifying environmental influences on stopover behaviour in broad temporal and geographic contexts, and (ii) demonstrating largely parallel interannual variation in stopover site-use among birds with contrasting migratory timing and strategies.  相似文献   

7.
ABSTRACT.   Studies comparing numbers of nocturnal migrants in flight with numbers of migrants at stopover sites have produced equivocal results. In 2003, we compared numbers of nocturnal migrants detected by radar to numbers of passerines observed at the Atlantic Bird Observatory in southwestern Nova Scotia, Canada. Numbers of nocturnal migrants detected by radar were positively correlated with numbers of migrants as determined by mist-netting, censuses, and daily estimated totals (daily estimates of birds present based netting and census results and casual observations) the following day. On nights with winds favorable for migration (tailwinds), the peak correlation between ground counts and radar counts the night before occurred just after sunset. On nights with unfavorable winds (headwinds), the correlation increased through the night, with a peak just before sunrise. The patterns of correlation are consistent with a scenario where birds accumulate at the coastline during periods of unfavorable wind, likely because they are not willing to cross a major ecological barrier, the Gulf of Maine. On nights with favorable winds, many birds departed, but some, possibly after testing wind conditions, apparently decided not to cross the Gulf of Maine and returned. Our results suggest that combining data collected using different methods to generate a daily estimated total provides the best estimate of the number of migrants present at a stopover site. Simultaneous studies at multiple locations where different census methods are used, making more effective use of temporal data (both from radar and diurnal counts), will more clearly elucidate patterns of flight behavior by migratory songbirds and the relationship between ground counts and counts of birds aloft.  相似文献   

8.
长距离迁徙鸟类对应于能量积累状态的取食行为调整   总被引:5,自引:0,他引:5  
迁徙鸟类能够预计到迁徙过程中对能量需求的增加和迁徙途中获得能量的不确定性。最佳迁徙理论指出:迁徙停留期的一系列决策受到体内能量状态、取食机会和迁徙时间的影响。利用刚完成春季跨越墨西哥湾迁徙的鸫类,我们研究了取食行为、体内能量状态和能量积累速度的相互关系。我们用雾网捕获了停留的鸫,然后给每只鸟进行了环志和称重,并估测了表皮下积累的脂肪。为了检测体内能量积累大小对取食行为的影响,我们把在野外观察到的鸟分成肥、瘦两组。当一天里被捕获鸟的平均体重低于相关种的瘦体重时,这一天被观察到的取食鸟被归到瘦组,反之就属于肥组。我们同时对一部分鸟用有色环进行了标记,以便能在野外观察到它们时能准确地知道每一只鸟的初始能量积累状态。在春天完成跨越墨西哥湾迁徙以后的鸫大约有50%在到达停留地时就已经消耗了所有的表皮下脂肪。与肥组鸟相比,瘦组的个体在停留期扩展了取食方法和取食基底,增加了取食速度。与此相关的是,瘦鸟表现出体重积累更多、速度更快。我们的数据表明迁徙鸟在到达迁徙中途停留地时的能量状态会影响到它们停留期间的取食行为和继续迁徙时的生理机能,从而影响停留期的长短和在迁徙途中停留与否的决定[动物学报51(1):12—23,2005]。  相似文献   

9.
For seasonally migrating birds, aspects of migratory behavior, such as the use of temperate versus tropical wintering areas, may influence their ability to respond to environmental change. Here, we infer potential flexibility in songbird migration from variation in two alternative stopover behaviors. Hierarchical Bayesian mark–recapture modeling was used to quantify stopover decisions over 19 years for four temperate and four tropical migratory species at a stopover site in southern Canada. Short-distance temperate migrants exhibited higher variability in behavior and greater responses to local weather than longer-distance tropical migrants, as measured by transience (the proportion of birds stopping <24 h, i.e. seeking brief sanctuary or subsequently relocating) and departure (re-initiation of migration by birds that stopped over for >24 h). In contrast to many previous works on climate–migration associations, annual variation in stopover behavior did not show strong links to broad-scale climatic fluctuations for either temperate or tropical migrants, nor was there any indication of directional changes in stopover behavior over the past two decades. In addition to suggesting that migratory songbirds—particularly tropical-wintering species—may face increasing threats with future climatic variability, our study highlights the potential importance of flexibility in en-route behavior for resilience to environmental change.  相似文献   

10.
Behavioral decisions made by migrating songbirds may depend on a variety of biotic and abiotic factors. To investigate which factors most influence songbird behavior on stopover, we related departure and directional decisions of captive birds released at the capture site to a variety of factors including, weather, date, energetic condition, age, sex, and species. We captured spring migrants during the day, released them after sunset, and visually assessed whether they departed the study site and if so, in which direction. Departure was strongly influenced by wind direction and energetic condition, especially fat stores. The proportion of birds departing increased as the season progressed. Directional decisions were also strongly influenced by energetic condition, particularly fat stores and plasma triglyceride levels. Wind direction also influenced the direction in which birds made migratory flights. While energetic condition, stage of migration, and weather seem to be important proximate determinants in departure and directional decisions, habitat availability and other factors may also need to be considered.  相似文献   

11.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

12.
Many migratory bird species fly mainly during the night (nocturnal migrants), others during daytime (diurnal migrants) and still others during both night and day. Need to forage during the day, atmospheric structure, predator avoidance and orientation conditions have been proposed as explanations for the widespread occurrence of nocturnal migration. However, the general principles that determine the basic nocturnal-diurnal variation in flight habits are poorly known. In the present study optimal timing of migratory flights, giving the minimum total duration of the migratory journey, is evaluated in a schematic way in relation to ecological conditions for energy gain in foraging and for energy costs in flight. There exists a strong and fundamental advantage of flying by night because foraging time is maximized and energy deposition can take place on days immediately after and prior to the nocturnal flights. The increase in migration speed by nocturnal compared with diurnal migration will be largest for birds with low flight costs and high energy deposition rates. Diurnal migration will be optimal if it is associated with efficient energy gain immediately after a migratory flight because suitable stopover/foraging places have been located during the flight or if energy losses during flight are substantially reduced by thermal soaring and/or by fly-and-forage migration. A strategy of combined diurnal and nocturnal migration may be optimal when birds migrate across regions with relatively poor conditions for energy deposition (not only severe but also soft barriers). Predictions about variable timing of migratory flights depending on changing foraging and environmental conditions along the migration route may be tested for individual birds by analysing satellite tracking results with respect to daily travel routines in different regions. Documenting and understanding the adaptive variability in daily travel schedules among migrating animals constitute a fascinating challenge for future research.  相似文献   

13.
Stopover behavior of migrant birds is influenced by their energetic condition, but also by extrinsic factors, including weather conditions and habitat attributes such as vegetation structure, microclimates, predation pressure, competition, and food availability. Anthropogenic habitats may differ from natural habitats in these attributes, which could promote differing stopover behaviors for migrants in the two habitat types and affect overall habitat suitability. We used radio‐telemetry to measure stopover behaviors of fall migrant yellow‐rumped warblers Setophaga coronata in native riparian corridor woodlands (corridors) and anthropogenic woodlots (woodlots) in the Northern Prairie region. We measured stopover duration, movement rate, and temporary home range size for birds in both habitat types by attaching radio‐transmitters and relocating birds to either corridor (n = 17) or woodlot (n = 16) study sites. We used AICC to rank null, global, and reduced models, which included habitat type, energetic condition, habitat size, year, date, and movement rate (for stopover duration analyses only) as explanatory variables. Model rankings showed that habitat type was not included in any of the top models (ΔAICC < 2) for movement behavior, temporary home range size, or stopover duration, which suggests similar functional habitat quality between the two habitat types. These data add similar behavioral responses for birds in the two habitat types to similar fattening rates and stress physiology, further confirming similar suitability of native and anthropogenic woodland habitats in this region as stopover habitat. We also applied logistic regression with a model selection approach, including cloud cover, tail wind component, temperature, and barometric pressure as independent variables, and departure decision as the dependent variable, to evaluate the effects of weather variables on departure. Model selection suggested that cloud cover is a prominent factor affecting departure decisions and the other variables may also influence departure decisions of yellow‐rumped warblers from inland stopover sites.  相似文献   

14.
1.?An innate migration strategy guides birds through space and time. Environmental variation further modulates individual behaviour within a genetically determined frame. In particular, ecological barriers could influence departure direction and its timing. A shift in the migratory direction in response to an ecological barrier could reveal how birds adjust their individual trajectories to environmental cues and body condition. 2.?Northern wheatears of the Greenland/Iceland subspecies Oenanthe oenanthe leucorhoa arrive in Western Europe en route from their West African winter range. They then undergo an endogenously controlled shift in migratory direction from north to north-west to cross a large ecological barrier, the North Atlantic. We radiotracked these songbirds departing from Helgoland, a small island in the North Sea, over an unprecedented range of their journey. 3.?Here, we show that both birds' body condition and the wind conditions that they encountered influenced the departure direction significantly. Jointly high fuel loads and favourable wind conditions enabled migrants to cross large stretches of sea. Birds in good condition departed early in the night heading to the sea towards their breeding areas, while birds with low fuel loads and/or flying in poor weather conditions departed in directions leading towards nearby mainland areas during the entire night. These areas could be reached even after setting off late at night. 4.?Behavioural adjustment of migratory patterns is a critical adaptation for crossing ecological barriers. The observed variation in departure direction and time in relation to fuel load and wind revealed that these birds have an innate ability to respond by jointly incorporating internal information (body condition) and external information (wind support).  相似文献   

15.
During migration, birds undergo alternating periods of fasting and re-feeding that are associated with dynamic changes in body mass (m(b)) and in organ size, including that of the digestive tract. After arrival at a migratory stopover site, following a long flight, a bird must restore the tissues of its digestive tract before it can refuel. In the present study we examined how the availability of dietary protein influences refueling of migrating blackcaps (Sylvia atricapilla) during a migratory stopover. We tested the following predictions in blackcaps deprived of food and water for 1-2 days to induce stopover behavior: (1) birds provided with a low-protein diet will gain m(b), lean mass and fat mass, and increase in pectoral muscle size slower than do birds fed a high-protein diet; (2) since stopover time is shorter in spring, birds will gain m(b) and build up fat tissue and lean tissue faster than in autumn; and (3) if low dietary protein limits a bird's ability to gain m(b) and fat reserves, then birds that do not obtain enough protein will initiate migratory restlessness (Zugunruhe) earlier than will birds with adequate dietary protein. These predictions were tested by providing captured migrating blackcaps with semisynthetic isocaloric diets differing only in their protein content. Each day, we measured m(b), and food intake; also lean mass and fat mass were measured using dual energy X-ray absorptiometry. In addition, we monitored nocturnal activity with a video recording system. In both spring and autumn, birds fed diets containing either 3 or 20% protein increased in m(b), lean mass and fat mass at similar rates during the experiment. However, the group receiving 3% protein ate more than did the group receiving 20% protein. In support of our predictions, m(b), lean mass, fat mass, and intake of food all were higher in spring than in autumn. We also found that in spring all birds had higher levels of migratory restlessness, but birds fed 3% protein were less active at night than were birds fed 20% protein, possibly an adaptation conserving energy and protein. We conclude that protein requirements of migrating blackcaps during stopover are lower than expected, and that birds can compensate for low dietary protein by behavioral responses, i.e. hyperphagia and decreased migratory restlessness, that ensure rapid refueling.  相似文献   

16.
Many species of birds and bats undertake seasonal migrations between breeding and over-wintering sites. En-route, migrants alternate periods of flight with time spent at stopover--the time and space where individuals rest and refuel for subsequent flights. We assessed the spatial scale of movements made by migrants during stopover by using an array of automated telemetry receivers with multiple antennae to track the daily location of individuals over a geographic area ~20 × 40 km. We tracked the movements of 322 individuals of seven migratory vertebrate species (5 passerines, 1 owl and 1 bat) during spring and fall migratory stopover on and adjacent to a large lake peninsula. Our results show that many individuals leaving their capture site relocate within the same landscape at some point during stopover, moving as much as 30 km distant from their site of initial capture. We show that many apparent nocturnal departures from stopover sites are not a resumption of migration in the strictest sense, but are instead relocations that represent continued stopover at a broader spatial scale.  相似文献   

17.
Temporal characteristics of migratory behavior in birds are usually studied at the species and population levels, and rarely at the individual level. Variations among species and populations of the seasonal onset of migratory behavior have been widely investigated, but very little is known about its daily organization or whether birds are conservative in their behavior. The determination of intra‐ and inter‐individual variability is important for the study of genetic variations and can reveal the existence of different adaptation capacities within populations. This laboratory study analyzed intra‐ and inter‐individual variability of daily initiation and time course of nocturnal restlessness in partial‐migrant European quail (Coturnix coturnix coturnix). Thirty‐five quail were selected randomly from a captive stock, and their spring activity was recorded under natural daylenghs. Eighteen of the thirty‐five quail presented behavioral profiles of migrant birds. Migrant birds initiated their nocturnal activity punctually, and the time courses of the nocturnal activity of 88% of them revealed intra‐individual stability over six consecutive nights. All birds initiated their nocturnal activity after sunset and civil twilight, and they were more active at the beginning than the middle or end of the night, suggesting that their drive to migrate could be synchronized with particular skylight conditions. For the first time, stable individual profiles in the daily time course of migratory restlessness are shown. These results support previous findings concerning biological rhythms of quail and raise questions concerning the timing of migratory behavior.  相似文献   

18.
Long-distance migrants face the challenge of a short window for reproduction that requires optimal timing and full functional gonads. Male garden warblers (Sylvia borin) meet these demands by initiating testicular recrudescence during spring migration, enabling them to reproduce immediately after arrival at the breeding grounds. In a combined field and laboratory study, we investigated testicular size, plasma levels of luteinizing hormone (LH), androstenedione (AE), 5α-dihydrotestosterone (DHT), testosterone and nocturnal migratory restlessness (Zugunruhe) under different stopover conditions. We manipulated food availability, the duration of stopover and simulated migration by food deprivation. Garden warblers showed significantly retarded testicular development after nine days of stopover under limited food conditions compared to birds that had ad libitum access to food. However, there was no significant difference in Zugunruhe between the two groups. Thus, the degree of Zugunruhe was unaffected by the quality of the stopover site and migration continued independent of the developmental state of the testis. We suggest that male garden warblers face the necessity to either compensate for slowed testicular recrudescence during the subsequent leg of migration and delay arrival at the breeding grounds, or arrive with less developed testes. Either of these may reduce annual reproductive success.  相似文献   

19.
Studies of Zugunruhe – the ‘migratory restlessness’ behaviour of captive birds – have been integral to our understanding of animal migration, revealing an inherited propensity to migrate and an endogenous timing and navigation system. However, differences between Zugunruhe in captivity and migration in the wild call for more data, in particular on variation within and among taxa with diverse migration strategies. Here, we characterise Zugunruhe in a long‐term dataset of activity profiles from stonechats (genus Saxicola) with diverse migratory phenotypes (976 migration periods from 414 birds), using a flexible and consistent quantitative approach based on changepoint analysis. For east African, Austrian, Irish, and Siberian stonechats and hybrids, we report key inter‐population differences in the occurrence, timing, and intensity of Zugunruhe. In line with expectations, we found the highest Zugunruhe intensity in the longest‐distance migrants, more variable patterns in short‐distance migrants, and intermediate characteristics of hybrids relative to their parental groups. Inter‐population differences imply high evolutionary lability of Zugunruhe timing within a robustly structured annual cycle. However, counter to theory, Irish partial migrants showed no segregation between migrant and resident individuals, and previously reported nocturnal restlessness was confirmed for resident African stonechats. Further features of nocturnal restlessness that did not align with migratory behaviour of stonechats were juvenile nocturnal restlessness even prior to postjuvenile moult, and protandry in spring, although stonechats winter in heterosexual pairs. Importantly, Zugunruhe of all populations declined with age, and the intensity of an individual bird's Zugunruhe was correlated with activity levels during other parts of the annual cycle. Our results confirm endogenous, population‐specific migration programmes but also reveal apparent discrepancies between Zugunruhe and migration in the wild. We thus highlight both the continued potential of Zugunruhe study and the need for circumspect interpretation when using migratory restlessness to make inferences about migration in the wild.  相似文献   

20.
Temporal characteristics of migratory behavior in birds are usually studied at the species and population levels, and rarely at the individual level. Variations among species and populations of the seasonal onset of migratory behavior have been widely investigated, but very little is known about its daily organization or whether birds are conservative in their behavior. The determination of intra- and inter-individual variability is important for the study of genetic variations and can reveal the existence of different adaptation capacities within populations. This laboratory study analyzed intra- and inter-individual variability of daily initiation and time course of nocturnal restlessness in partial-migrant European quail (Coturnix coturnix coturnix). Thirty-five quail were selected randomly from a captive stock, and their spring activity was recorded under natural daylenghs. Eighteen of the thirty-five quail presented behavioral profiles of migrant birds. Migrant birds initiated their nocturnal activity punctually, and the time courses of the nocturnal activity of 88% of them revealed intra-individual stability over six consecutive nights. All birds initiated their nocturnal activity after sunset and civil twilight, and they were more active at the beginning than the middle or end of the night, suggesting that their drive to migrate could be synchronized with particular skylight conditions. For the first time, stable individual profiles in the daily time course of migratory restlessness are shown. These results support previous findings concerning biological rhythms of quail and raise questions concerning the timing of migratory behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号