首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.  相似文献   

2.
3.
We have previously observed that in common carp (Cyprinus carpio), administration of β-glucan (MacroGard®) as feed additive leads to a lower expression of pro-inflammatory cytokines suggesting that this immunostimulant may be preventing an acute and potentially dangerous response to infection, particularly in the gut. However, in general, mechanisms to detect and eliminate pathogens must also be induced in order to achieve an efficient clearance of the infection. Protection against viral diseases acquired through β-glucan-supplemented feed has been extensively reported for several experimental models in fish but the underlining mechanisms are still unknown. Thus, in order to better characterize the antiviral action induced by β-glucans in fish, MacroGard® was administered daily to common carp in the form of supplemented commercial food pellets. Carp were fed for a period of 25 days prior to intra-peritoneal injection with polyinosinic:polycytidylic acid (poly(I:C)), a well-known double-stranded RNA mimic that triggers a type-I interferon (IFN) response. Subsequently, a set of immune related genes, including mx, were analysed by real-time PCR on liver, spleen, head kidney and mid gut tissues. Results obtained confirmed that treatment with β-glucan alone generally down-regulated the mRNA expression of selected cytokines when compared to untreated fish, while mx gene expression remained stable or was slightly up-regulated. Injection with poly(I:C) induced a similar down-regulated gene expression pattern for cytokines in samples from β-glucan fed fish. In contrast, poly(I:C) injection markedly increased mx gene expression in samples from β-glucan fed fish but hardly in samples from fish fed control feed. In an attempt to explain the high induction of mx, we studied Toll-like receptor 3 (TLR3) gene expression in these carp. TLR3 is a prototypical pattern recognition receptor considered important for the binding of viral double-stranded RNA and triggering of a type-I IFN response. Through genome data mining, two sequences for carp tlr3 were retrieved (tlr3.1 and tlr3.2) and characterized. Constitutive gene expression of both tlr3.1 and tlr3.2 was detected by real-time PCR in cDNA of all analysed carp organs. Strikingly, 25 days after β-glucan feeding, very high levels of tlr3.1 gene expression were observed in all analysed organs, with the exception of the liver. Our data suggest that β-glucan-mediated protection against viral diseases could be due to an increased Tlr3-mediated recognition of ligands, resulting in an increased antiviral activity of Mx.  相似文献   

4.
Disease is caused by a complex interaction between the pathogen, environment, and the physiological status of the host. Determining how host ontogeny interacts with water temperature to influence the antiviral response of the Pacific oysters, Crassostrea gigas, is a major goal in understanding why juvenile Pacific oysters are dying during summer as a result of the global emergence of a new genotype of the Ostreid herpesvirus, termed OsHV-1 μvar. We measured the effect of temperature (12 vs 22 °C) on the antiviral response of adult and juvenile C. gigas injected with poly I:C. Poly I:C up-regulated the expression of numerous immune genes, including TLR, MyD88, IκB-1, Rel, IRF, MDA5, STING, SOC, PKR, Viperin and Mpeg1. At 22 °C, these immune genes showed significant up-regulation in juvenile and adult oysters, but the majority of these genes were up-regulated 12 h post-injection for juveniles compared to 26 h for adults. At 12 °C, the response of these genes was completely inhibited in juveniles and delayed in adults. Temperature and age had no effect on hemolymph antiviral activity against herpes simplex virus (HSV-1). These results suggest that oysters rely on a cellular response to minimise viral replication, involving recognition of virus-associated molecular patterns to induce host cells into an antiviral state, as opposed to producing broad-spectrum antiviral compounds. This cellular response, measured by antiviral gene expression of circulating hemocytes, was influenced by temperature and oyster age. We speculate whether the vigorous antiviral response of juveniles at 22 °C results in an immune-mediated disorder causing mortality.  相似文献   

5.
6.
7.
Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression.  相似文献   

8.
ABSTRACT

Indole-6-carboxaldehyde (I6CA), an indole derivative isolated from the marine brown algae Sargassum thunbergii, is known to have several beneficial effects, but no studies on immune regulation have been conducted. In this study, the immunomodulatory properties of I6CA on murine RAW 264.7 monocyte/macrophage cells were evaluated. As the concentration of I6CA increased, the morphology of RAW 264.7 cells changed to a typical active macrophage shape, and the phagocytic activity increased significantly. I6CA effectively enhanced the production and secretion of immunomodulatory mediators and cytokines due to increased expression of their respective genes. Additionally, I6CA markedly stimulated the expression of Toll-like receptor 4 (TLR4) and its adapter molecule, myeloid differentiation factor 88 (Myd88), and increased TLR4 complexed with Myd88. Furthermore, I6CA promoted the nuclear translocation of nuclear factor-kappa B (NF-κB) by increasing the degradation of the inhibitor of NF-κB-α. Meanwhile, similar trends were also found in lipopolysaccharide-treated cells as a positive control. Furthermore, molecular docking simulation showed that I6CA interacted with TLR4-myeloid differentiation 2 complex. Taken together, the results support the concept that I6CA may increase the activity of the TLR4/NF-κB signaling pathway in order to enhance the immunomodulatory activity of RAW 264.7 cells.  相似文献   

9.
Neutrophils, historically known for their involvement in acute inflammation, are also targets for infection by many different DNA and RNA viruses. However, the mechanisms by which they recognize and respond to viral components are poorly understood. Polyinosinic:polycytidylic acid (poly(I:C)) is a synthetic mimetic of viral dsRNA that is known to interact either with endosomal TLR3 (not expressed by human neutrophils) or with cytoplasmic RNA helicases such as melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). In this study, we report that intracellularly administered poly(I:C) stimulates human neutrophils to specifically express elevated mRNA levels encoding type I IFNs, immunoregulatory cytokines, and chemokines, such as TNF-alpha, IL-12p40, CXCL10, CXCL8, CCL4, and CCL20, as well as classical IFN-responsive genes (IRG), including IFIT1 (IFN-induced protein with tetratricopeptide repeats 1)/IFN-stimulated gene (ISG)56, G1P2/ISG15, PKR (dsRNA-dependent protein kinase), and IFN-regulatory factor (IRF)7. Investigations into the mechanisms whereby transfected poly(I:C) promotes gene expression in neutrophils uncovered a crucial involvement of the MAPK-, PKR-, NF-kappaB-, and TANK (TNF receptor-associated NF-kappaB kinase)-binding kinase (TBK1)/IRF3-signaling transduction pathways, as illustrated by the use of specific pharmacological inhibitors. Consistent with the requirement of the cytoplasmic dsRNA pathway for antiviral signaling, human neutrophils were found to constitutively express significant levels of both MDA5 and RIG-I, but not TLR3. Accordingly, neutrophils isolated from MDA5-deficient mice had a partial impairment in the production of IFN-beta and TNF-alpha upon infection with encephalomyocarditis virus. Taken together, our data demonstrate that neutrophils are able to activate antiviral responses via helicase recognition, thus acting at the frontline of immunity against viruses.  相似文献   

10.
Arthralgia-associated alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), pose significant public health threats because of their ability to cause explosive outbreaks of debilitating arthralgia and myalgia in human populations. Although the host inflammatory response is known to contribute to the pathogenesis of alphavirus-induced arthritis and myositis, the role that Toll-like receptors (TLRs), which are major regulators of host antiviral and inflammatory responses, play in the pathogenesis of alphavirus-induced arthritis and myositis has not been extensively studied. Using a mouse model of RRV-induced myositis/arthritis, we found that myeloid differentiation primary response gene 88 (Myd88)-dependent TLR7 signaling is involved in protection from severe RRV-associated disease. Infections of Myd88- and TLR7-deficient mouse strains with RRV revealed that both Myd88 and TLR7 significantly contributed to protection from RRV-induced mortality, and both mouse strains exhibited more severe tissue damage than wild-type (WT) mice following RRV infection. While viral loads were unchanged in either Myd88 or TLR7 knockout mice compared to WT mice at early times postinfection, both Myd88 and TLR7 knockout mice exhibited higher viral loads than WT mice at late times postinfection. Furthermore, while high levels of RRV-specific antibody were produced in TLR7-deficient mice, this antibody had very little neutralizing activity and had lower affinity than WT antibody. Additionally, TLR7- and Myd88-deficient mice showed defects in germinal center activity, suggesting that TLR7-dependent signaling is critical for the development of protective antibody responses against RRV.  相似文献   

11.
Type I interferons (IFN-alpha/beta) play an essential role in both innate and adaptive antiviral immune responses. IFN- beta is produced by fibroblasts and myeloid dendritic cells (DCs) upon viral infection or in response to doublestranded RNA (dsRNA). Several intracellular molecules having a dsRNA-binding motif such as dsRNA-dependent protein kinase recognize dsRNA in a sequence-independent manner and induce antiviral innate responses. Toll-like receptor (TLR) 3, a member of TLR family proteins, recognizes extracellular dsRNA and activates NF- kappaB and the IFN-beta promoter leading to the induction of IFN-beta production. Here we analyzed the dsRNA structure capable of inducing TLR3-mediated IFN-beta production using various synthetic RNA duplexes. In contrast to the recognition of dsRNA by intracellular molecules, TLR3 preferentially recognizes polyriboinocinic:polyribocytidylic acid (poly(I:C)) rather than synthetic virus-derived dsRNAs. 2'-O-methyl or 2'-fluoro modification of cytidylic acid abolished the IFN-beta-inducing ability of the poly(I:C) duplex, and these modified dsRNAs inhibited poly(I:C)-induced TLR3-mediated IFN-beta production by fibroblasts and DCs. In addition, poly(dI:dC), a non-IFN inducer, also blocked poly(I:C)-induced IFN-beta induction. Since TLR3 is localized in the intracellular compartment of DCs where signaling occurs, modified dsRNAs may compete with poly(I:C) for binding to the cell-surface receptor that transfers dsRNA into TLR3-enriched vesicles. Thus, TLR3 recognizes a unique dsRNA structure that largely differs from those recognized by other dsRNA-binding proteins.  相似文献   

12.
In the wake of RNA virus infections, dsRNA intermediates are often generated. These viral pathogen-associated molecular patterns can be sensed by a growing number of host cell cytosolic proteins and TLR3, which contribute to the induction of antiviral defenses. Recent evidence indicates that melanoma differentiation-associated gene-5 is the prominent host component mediating IFN production after exposure to the dsRNA analog, poly(I:C). We have previously reported that Punta Toro virus (PTV) infection in mice is exquisitely sensitive to treatment with poly(I:C(12)U), a dsRNA analog that has a superior safety profile while maintaining the beneficial activity of the parental poly(I:C) in the induction of innate immune responses. The precise host factor(s) mediating protective immunity following its administration remain to be elucidated. To assess the role of TLR3 in this process, mice lacking the receptor were used to investigate the induction of protective immunity, type I IFNs, and IL-6 following treatment. Unlike wild-type mice, those lacking TLR3 were not protected against PTV infection following poly(I:C(12)U) therapy and failed to produce IFN-alpha, IFN-beta, and IL-6. In contrast, poly(I:C) treatment significantly protected TLR3(-/-) mice from lethal challenge despite some deficiencies in cytokine induction. There was no indication that the lack of protection was due to the fact that TLR3-deficient mice had a reduced capacity to fight infection because they were not found to be more susceptible to PTV. We conclude that TLR3 is essential to the induction of antiviral activity elicited by poly(I:C(12)U), which does not appear to be recognized by the cytosolic sensor of poly(I:C), melanoma differentiation-associated gene-5.  相似文献   

13.
RIG-I-like receptors (RLRs), including retinoic acid-inducible gene-I (RIG-I) and MDA5, constitute a family of cytoplasmic RNA helicases that senses viral RNA and mounts antiviral innate immunity by producing type I interferons and inflammatory cytokines. Despite their essential roles in antiviral host defense, RLR signaling is negatively regulated to protect the host from excessive inflammation and autoimmunity. Here, we identified ADP-ribosylation factor-like protein 5B (Arl5B), an Arl family small GTPase, as a regulator of RLR signaling through MDA5 but not RIG-I. Overexpression of Arl5B repressed interferon β promoter activation by MDA5 but not RIG-I, and its knockdown enhanced MDA5-mediated responses. Furthermore, Arl5B-deficient mouse embryonic fibroblast cells exhibited increased type I interferon expression in response to MDA5 agonists such as poly(I:C) and encephalomyocarditis virus. Arl5B-mediated negative regulation of MDA5 signaling does not require its GTP binding ability but requires Arl5B binding to the C-terminal domain of MDA5, which prevents interaction between MDA5 and poly(I:C). Our results, therefore, suggest that Arl5B is a negative regulator for MDA5.  相似文献   

14.
15.
Liang Z  Wu S  Li Y  He L  Wu M  Jiang L  Feng L  Zhang P  Huang X 《PloS one》2011,6(8):e23346
Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8) did not show a significant effect. TLR3 ligand poly(I:C) treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I:C) reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β) and type III IFN (IL-28A/B). Intriguingly, neutralization of IFN-β alone successfully restored the poly(I:C)-inhibited replication of DENV2. The poly(I:C)-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I:C) mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I:C) may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention.  相似文献   

16.
The induction of type I IFN is the most immediate host response to viral infections. Type I IFN has a direct antiviral activity mediated by antiviral enzymes, but it also modulates the function of cells of the adaptive immune system. Many viruses can suppress type I IFN production, and in retroviral infections, the initial type I IFN is weak. Thus, one strategy of immunotherapy in viral infection is the exogenous induction of type I IFN during acute viral infection by TLR ligands. Along these lines, the TLR3/MDA5 ligand polyinosinic-polycytidylic acid [poly(I:C)] has already been used to treat viral infections. However, the immunological mechanisms underlying this successful therapy have not been defined until now. In this study, the Friend retrovirus (FV) mouse model was used to investigate the mode of action of poly(I:C) in antiretroviral immunotherapy. Postexposure, poly(I:C) treatment of FV-infected mice resulted in a significant reduction in viral loads and protection from virus-induced leukemia. This effect was IFN dependent because type I IFN receptor-deficient mice could not be protected by poly(I:C). The poly(I:C)-induced IFN response resulted in the expression of antiviral enzymes, which suppressed FV replication. Also, the virus-specific T cell response was augmented. Interestingly, it did not enhance the number of virus-specific CD4(+) and CD8(+) T cells, but rather the functional properties of these cells, such as cytokine production and cytotoxic activity. The results demonstrate a direct antiviral and immunomodulatory effect of poly(I:C) and, therefore, suggests its potential for clinical treatment of retroviral infections.  相似文献   

17.
Toll-like receptors (TLRs) are pattern recognition receptors that play a critical role in innate immune diseases. TLR3, which is localized in the endosomal compartments of hematopoietic immune cells, is able to recognize double-stranded RNA (dsRNA) derived from viruses and bacteria and thereby induce innate immune responses. Inflammatory periodontal bone resorption is caused by bacterial infections, which initially is regulated by innate immunity; however, the roles of TLR3 signaling in bone resorption are still not known. We examined the roles of TLR3 signaling in bone resorption using poly(I:C), a synthetic dsRNA analog. In cocultures of mouse bone marrow cells and stromal osteoblasts, poly(I:C) clearly induced osteoclast differentiation. In osteoblasts, poly(I:C) increased PGE2 production and upregulated the mRNA expression of PGE2-related genes, Ptgs2 and Ptges, as well as that of a gene related to osteoclast differentiation, Tnfsf11. In addition, we found that indomethacin (a COX-2 inhibitor) or an antagonist of the PGE2 receptor EP4 attenuated the poly(I:C)-induced PGE2 production and subsequent Tnfsf11 expression. Poly(I:C) also prolonged the survival of the mature osteoclasts associated with the increased mRNA expression of osteoclast marker genes, Nfatc1 and Ctsk. In ex vivo organ cultures of periodontal alveolar bone, poly(I:C) induced bone-resorbing activity in a dose-dependent manner, which was attenuated by the simultaneous administration of either indomethacin or an EP4 antagonist. These data suggest that TLR3 signaling in osteoblasts controls PGE2 production and induces the subsequent differentiation and survival of mature osteoclasts. Endogenous TLR3 in stromal osteoblasts and osteoclasts synergistically induces inflammatory alveolar bone resorption in periodontitis.  相似文献   

18.
19.

Background

Bacterial and viral infections are known to promote airway hyperresponsiveness (AHR) in asthmatic patients. The mechanism behind this reaction is poorly understood, but pattern recognizing Toll-like receptors (TLRs) have recently been suggested to play a role.

Materials and Methods

To explore the relation between infection-induced airway inflammation and the development of AHR, poly(I:C) activating TLR3 and LPS triggering TLR4, were chosen to represent viral and bacterial induced interactions, respectively. Female BALB/c or MyD88-deficient C57BL/6 mice were treated intranasally with either poly(I:C), LPS or PBS (vehicle for the control group), once a day, during 4 consecutive days.

Results

When methacholine challenge was performed on day 5, BALB/c mice responded with an increase in airway resistance. The maximal resistance was higher in the poly(I:C) and LPS treated groups than among the controls, indicating development of AHR in response to repeated TLR activation. The proportion of lymphocytes in broncheoalveolar lavage fluid (BALF) increased after poly(I:C) treatment whereas LPS enhanced the amount of neutrophils. A similar cellular pattern was seen in lung tissue. Analysis of 21 inflammatory mediators in BALF revealed that the TLR response was receptor-specific. MyD88-deficient C57BL/6 mice responded to poly (I:C) with an influx of lymphocytes, whereas LPS caused no inflammation.

Conclusion

In vivo activation of TLR3 and TLR4 in BALB/c mice both caused AHR in conjunction with a local inflammatory reaction. The AHR appeared to be identical regardless of which TLR that was activated, whereas the inflammation exhibited a receptor specific profile in terms of both recruited cells and inflammatory mediators. The inflammatory response caused by LPS appeared to be dependent on MyD88 pathway. Altogether the presented data indicate that the development of AHR and the induction of local inflammation might be the result of two parallel events, rather than one leading to another.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号