首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Marrow-stem kale plants grown on plots receiving frequent additions of sulphate of ammonia showed a 40% increase in length of internode and a 25% increase in number of nodes per plant, and the leaf size was increased by between 50 and 70% over plants in plots receiving no N fertilizer. Leaves of kale continue to increase in area until they turn yellow, and the high N leaves showed a greater rate of increase in area at every stage in the life of the leaf.
Various features of leaf structure, such as stomatal index, and thickness of palisade and mesophyll, were unaffected by N treatment. The size of the epidermal cells of the leaves was very variable, and although the high N leaves showed a 12% increase in area per epidermal cell over the low N leaves, this difference is not statistically significant. The increased area of the high N leaves can therefore be attributed mainly to increased cell division during the life of the leaf. Only a very slight increase in rate of cell division is necessary to produce the observed effect.
The greater leaf area of the high N plants can be attributed mainly to increased size of individual leaves, but there was also a significantly greater number of living functional leaves per plant on the high N plants; at 23 weeks from sowing the high N plants had an average of 13.4 living leaves, while the low N plants had only 11.7 living leaves per plant.
There was an appreciable degree of N succulence in the high N kale leaves, which showed a 2% greater moisture content than the low N leaves.
A seasonal drift in epidermal cell size, palisade thickness, and total leaf thickness, is shown to be fully significant, statistically. Marked variations in stomatal frequency are barely significant at the 5% level.  相似文献   

2.
 以强筋型小麦(Triticum aestivum)品种‘豫麦34号’为材料,采用盆栽方法研究了土壤水分对氮素同化酶活性及籽粒品质的影响。结果表明:旗叶硝酸还原酶(NR)活性于花后呈下降趋势,且土壤含水量为田间持水量(FC)60%的处理活性最强,其次为40%FC,活性最低的是80%FC。旗叶和籽粒中谷氨酰胺合成酶(GS)活性于开花15 d前均呈下降趋势,15 d后均为上升趋势,各水分处理间酶活性大小关系是:80%FC>60%FC>40%FC。各水分处理间旗叶和籽粒谷氨酸合成酶(GOGAT)活性的大小关系同GS。60%FC籽粒产量及品质最优,80%FC产量次之,40%FC产量最低;40%FC品质次之,80%FC品质最低。不同水分处理下籽粒蛋白质含量与叶片NR、GS 和籽粒GOGAT活性均呈正相关,与旗叶GOGAT活性呈负相关。且40%FC和80%FC下籽粒蛋白质含量只与旗叶GS活性相关性达显著水平, 60%FC下蛋白质含量则与旗叶NR和籽粒GS活性均达显著相关,与旗叶GS活性达极显著相关。  相似文献   

3.
The yield of spring barley grown outside was little affected by the removal of all fully expanded leaves during late tillering or early stem extension but was decreased by defoliation either earlier or later. Removal of all except the top two leaves when 50% of the ears were fully emerged also had relatively little effect on yield but damage was increased if only the flag leaf was retained, especially if the leaves apart from the flag leaf were removed 10 days earlier when the first awns were visible. Defoliation treatments, including those which had little effect on barley grown outside, generally had proportionately greater effects if the plants were moved to a warm glasshouse at the start of grain filling.  相似文献   

4.
The effectiveness of 5 strobilurin fungicides: Acanto 250 SC, Amistar 250 SC, Discus 500 WG, Signum 33 WG, Zato 50 WG and Score 250 EC (triazole-standard) in the control of Puccinia horiana was tested on chrysanthemum cv. Melba Blane. Number of pustules per leaf was observed before treatment, as well as 2 and 4 weeks after treatment. Additionally, after 4 weeks, their influence on plant growth, size of pustules and eventually phytotoxicity were assessed. Plants were sprayed preventively and curatively 4 times at weekly intervals. In preventive programme after 4 weeks of investigations, average of about 1.5 spot per leaf was recorded on control plants. Disease symptoms did not appear on chrysanthemums protected by fungicides Signum 33 WG at concentration 0.18% and Zato 50 WG at concentration 0.015%. In case of the other tested fungicides only sporadically pustules on single leaves were noticed (over 95% of them were browned, dried and crumbled). On control plants more than 46% of leaves was infected but in case of the other investigated fungicides it was only 3-7%. Diameter of spots on plants protected with: Score 250 EC, Acanto 250 SC and Discus 500 WG was similar as on the leaves of control plants. On plants protected with Amistar 250 SC the diameter of pustules was significantly lower than on control plants. In curative programme after 4 weeks of tests, leaves of control plants had about 4 spots per leaf. On leaves sprayed with Score 250 EC at concentration 0.05% there were 4 times less spots than on control plants. Chrysanthemums treated with tested strobilurin fungicides had about 2 times less pustules than on control plants. Diameter of spots on control plant leaves was 3.6 mm and was similar as on chrysanthemums protected with tested fungicides. On leaves of control plants all pustules were active without visible changes or damage but in case of the investigated fungicides almost 100% of them were browned, dried and crumbled. After 4 weeks of experiment, a measured height of control plants was about 125 mm and was similar to the height of plants protected with tested fungicides except Signum 33 WG, which stimulated plant growth. None of tested compounds showed phytotoxic effect.  相似文献   

5.
The effect of water stress on glutathione reductase and catalase activities was evaluated in leaf blades of field-grown winter wheat (Triticum aestivum L.). Wheat was sown at two seeding rates under both irrigated and dryland conditions. Flag leaves from dryland plants sown at 60 kilograms/hectare showed no change in either glutathione reductase or catalase activities per unit leaf area, while leaves from the basal portion of the canopy exhibited a 273% increase in glutathione reductase activity and a 60% increase in catalase activity. Glutathione reductase activity in dryland plants sown at 120 kilograms/hectare increased 25% in flag leaves and 225% in basal leaves. No change in catalase activity was observed in either flag or basal leaves from these same plants. The increase in glutathione reductase activity in response to water stress was observed when activity was expressed on either a per unit leaf area, protein, or chlorophyll basis. No change in catalase activity was detected when enzyme activity was expressed on a protein basis.  相似文献   

6.
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2, and with two amounts of N fertilizer (none and 70 kg ha−1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.  相似文献   

7.
The relation between the source-sink ratio and nitrogen nutrition on grain yield of wheat ( Triticum aestivum L. cv. Klein Chamaco) was studied in a greenhouse experiment. Plants were grown until anthesis in pots with soil fertilized with 0.16 mmol N per plant twice a week. At anthesis, all leaves but the flag leaf were excised in a group of plants. In another group the treatment consisted in a similar defoliation plus the longitudinal excision of half the ear, while a third group was left untouched as a control. At the same time, the N supply to half of the plants in each group was interrupted, while the other half continued receiving 16 m M N. The defoliated plants showed a longer functional life of the flag leaf than the control, retaining the chlorophyll, soluble proteins and total reduced nitrogen for a longer time. The ear-excised plants showed an intermediate behavior. The plants with the interrupted N supply showed a faster leaf senescence than the N supplied ones, and this coincided with an increase in the proteolytic activity and nitrogen transport to the ear. However there were no differences in ear weight between the two nitrogen treatments. It is concluded that leaves and ear compete for the nitrogen, and that a low level of carbohydrates in the flag leaf, due to a low source-sink ratio, delays leaf senescence.  相似文献   

8.
Yield per shoot and to a much lesser extend yield per unit area were related to morphological characters. The flag sheath was better related to shoot yield than were any of the three uppermost leaf laminae. Among these the areas of the two lower leaves showed a better relationship to the yield than did the flag leaf lamina. Variation in main shoot yield was associated mainly with variation in grain number. More attention should be given to morphological character related to spike development before anthesis.  相似文献   

9.
Cytokinin, auxin and gibberellin-like substances were bio-assayed in extracts from developing ears of wheat plants grown in various conditions. Changes in cytokinin activity along the ears may be related to the earlier flowering in the middle of the ear. Ears on the main stems of plants from which all the tillers had been removed contained less cytokinin than the main-stem ears of normal tillered plants. When grain development was stopped by preventing fertilization of the ovules the ear contained more cytokinin than normal ears. With de-tillered plants, removing flag leaves before anthesis increased cytokinin, gibberellin and auxin in the ears; later removal of flag leaves did not affect cytokinin but decreased gibberellin in the ears. Conversely, removing ears before anthesis did not affect cytokinin or auxin in the flag leaves, but their gibberellin was less than that of flag leaves on intact plants. Treatment of wheat ears with zeatin did not affect grain weight or number per ear which supports the conclusion that the growth substances in the ear may be adequate for normal grain growth.  相似文献   

10.
The effect of gibberellic acid, CCC (2-chloroethyltrimethylammonium chloride) and B 9 (N-dimethylaminosuccinamic acid) was studied on growth of potato plants in pots. Growth was analysed on four occasions and changes in habit defined in terms of internode lengths, leaf areas and growth of lateral branches. Soaking seed pieces for 1 hr. in GA solution caused six internodes to elongate greatly, an effect not prevented by CCC applied when the shoot emerged from the soil. The effects on internode extension were determined by the length of the interval between GA treatment and CCC treatment. Treatment at emergence with CCC shortened all internodes and more CCC applied 4 weeks later had no effect. Late application of CCC or B9 shortened the top two lateral branches, usually very long in untreated plants. The regulators affected leaf growth differently from internode growth: usually growth regulators had less effect on leaf growth. Effects on growth depended on when the regulators were applied. Treatment with GA alone inhibited bud development at higher nodes than in untreated plants; when followed by late treatment with CCC, lateral growth at higher nodes was also less. CCC retarded development of lateral branches especially when applied early. B9 had a similar effect to CCC applied late. When regulators retarded growth of lower laterals, upper laterals often grew more than in untreated plants. Treatments did not affect the number of leaves on the main stem at first but later GA hastened senescence. GA increased the number of leaves on lateral stems, and the effect was enhanced by CCC. CCC alone increased the number of first- and second-order lateral leaves. GA lengthened and CCC shortened stolons. The effect of CCC persisted throughout the life of the plant. CCC or B 9 shortened stolons whenever applied. CCC hastened tuber initiation but slowed tuber growth. CCC at first retarded formation of lateral tubers but had no effect on the ultimate numbers of lateral and terminal tubers. The value of E (net assimilation rate) did not alter with time. CCC applied at emergence increased E, probably because it hastened tuber initiation and temporarily increased sink capacity. Although tubers formed earlier with CCC, their growth was slower and their demand for carbohydrate was also less. The increase in second-order laterals in CCC-treated plants indicates that they utilize carbohydrate that would normally go to tubers. This experiment also demonstrates that crowding leaves by shortening stems did not diminish E, possibly because another over-riding process (bigger sinks) offsets the effect of shading.  相似文献   

11.
Effects of Nitrogen Fertilizer on Growth and Yield of Spring Wheat   总被引:1,自引:0,他引:1  
Nine amounts of nitrogen fertilizer, ranging from 0 to 200 kgN ha–1, were applied to spring wheat cv. Kleiber in the3 years 1972-1974. In 1972 grain dry weight with 125 kg N ha–1or more was 100 g m–2 (23 per cent) greater than withoutnitrogen. Grain yield was unaffected by nitrogen in the otheryears. Leaf area at and after anthesis was increased throughoutthe range of nitrogen tested, most in 1972 and least in 1973.Consequently, the addition of 200 kg N ha–1 decreasedthe amount of grain produced per unit of leaf area by approximately25 per cent in all years. The dry weight of leaves and stems at anthesis and maturitywas increased by nitrogen in all years, similarly to leaf area.However, the change in stem dry weight between anthesis andmaturity was not affected by nitrogen; stems increased in dryweight for about 20 days after anthesis and then decreased tovalues similar to those at anthesis. The uptake of CO2 per unit area of flag leaf or second leaf(leaf below the flag leaf) was slightly decreased by nitrogenwhen the increase in leaf area caused by nitrogen appreciablydecreased the light intensity at the surface of these leaves.In spite of such decreases the CO2 absorbed by flag and secondleaves per unit area of land was always increased by nitrogen,and relatively more than was grain yield. It is suggested that increases in respiratory loss of CO2 withincreasing nitrogen fertilizer may explain why nitrogen increasedvegetative growth and leaf area relatively more than grain yield.  相似文献   

12.
大穗型小麦叶片性状、养分含量及氮素分配特征   总被引:3,自引:0,他引:3  
王丽芳  王德轩  上官周平 《生态学报》2013,33(17):5219-5227
采用田间试验研究了8个大穗型小麦新品系和西农979不同生育期比叶面积(SLA)、叶干物质含量(LDMC)与养分含量的差异性,并对其不同器官氮素积累和分配情况进行了探讨。结果表明,大穗型小麦的SLA和LDMC平均值小于西农979;小麦叶片养分含量由大到小依次为全氮(N)、全钾(K)和全磷(P);成熟期大穗型小麦品系各器官平均氮素积累能力都高于对照,氮素积累量及分配比例的大小顺序为籽粒>茎+鞘>穗草(穗轴+颖壳)>旗叶>倒二叶>余叶;大穗型小麦平均转移率和贡献率较西农979低;抽穗期旗叶SLA和LDMC呈负相关关系,SLA和N含量呈不显著的正相关,和P、K呈极显著的负相关。小麦叶片结构性状与养分含量影响体内有机物质的积累与转运,通过水肥调控措施来提高大穗型小麦养分利用效率的研究需进一步加强。  相似文献   

13.
In situ and light-saturated net photosynthetic rates per unit leaf area were greater in cotton (Gossypium hirsutum L.) plants grown in pots in the field than in similar plants from a phytotron growth chamber. Light-saturated stomatal resistances did not differ in leaves of similar age and exposure on field and chamber plants; lower photosynthetic rates in chamber leaves were associated with greater mesophyll resistance. Differences in net photosynthetic rates were related to differences in leaf thickness. When the photosynthetic rates were expressed per unit of mesophyll volume or per unit chlorophyll differences between field and chamber plants were much less than when rates were expressed per unit leaf area. Characterization of the chloroplast lamellar proteins showed that the field leaves had smaller photosynthetic units than the chamber leaves. Since the field leaves also contained more chlorophyll per unit area, this resulted in a much larger number of photosynthetic units per unit area in the field leaves.  相似文献   

14.
Light leaf spot lesions were generally first observed as light green areas on leaves of UK winter oilseed rape crops in January or February and later became brittle and bleached. Elongated lesions, which were brown with indistinct edges, developed on stems in the spring and summer, when lesions were also observed on flower buds, pedicels and pods. Development of diagnostic white pustules (spore masses of Pyrenopeziza brassicae, which erupt through surfaces of infected tissues) for confirmation of light leaf spot infection on symptomless plants or plants with indistinct or ambiguous symptoms in the autumn, winter or spring was enhanced by incubating plants in polyethylene bags. In experiments with artificially inoculated plants, glasshouse-grown plants exposed in infected crops and plants sampled from crops, white pustules developed at all incubation temperatures from 2oC to 20oC on infected leaves of different cultivars. The period of incubation required before the appearance of pustules decreased as the time that had already elapsed since the initial infection increased. The longest periods of incubation were required at the lowest temperatures (2oC or 5oC) but leaves senesced and abscised from plants most quickly at the highest temperatures (15oC or 20oC), suggesting that the optimal incubation temperature was between 10oC and 15oC.  相似文献   

15.
Cotton plants (Gossypium hirsutum L.) grown on deficient levels of N exhibited many of the characteristics associated with drought resistance. In N-deficient plants, leaf areas and leaf epidermal cells were smaller than at the same nodes in high-N plants. N-deficient leaves lost only about half as much water per unit change in water potential as did high-N leaves. In addition, they maintained a greater relative water content than high-N leaves at any given potential. Osmotic potentials (determined from pressure-volume curves) were slightly lower in N-deficient leaves. This difference in solute concentration was not from organic acids, which were almost unchanged. Sugar concentrations could account for only about 25% of the difference.  相似文献   

16.
The effect of leaf age and nodal position on leaf receptivity to rice blast, caused by Pyricularia grisea , was studied by inoculating potted Rosemont plants with blast pathogen race IC-17, isolate 92T107. at different growth stages. Regressioti equations were used to describe the effect ofleaf age (degree days > 10 C) and nodal position on lesion density, the relative frequency of lesion appearance, and the lesion area distribtition. The number of sporulating lesions per cm2 of inoculated leaf area was highest for leaves inoculated early in their development and progressively lower for leaves inoculated later in their development. The average lesion density for less than 1-day-old leaves at nodal position 6 was about four times the density for 10-day-old leaves of the same nodal position. Lesion density was similar for leaves of less than 1-day-old from the 4th to the 7th nodal position, but dropped sharply from the 7th to the 11 th nodal position. The flag leaf was the least susceptible of all nodal positions. The average lesion density for young leaves of about 1-day-old at nodal position 6 was about 27 times the density for young flag leaves of the same age. The incubation period increased with leaf age. but was not obviously affected by leaf nodal position. Lesion area increased linearly with time, but was not affected by leaf age and nodal position. The results are of use for epidemiological investigations which rely on detailed quantitative leaf susceptibility data for accurate blast forecasts.  相似文献   

17.
Further evidence is provided that the environment of sugar-beet seedlings, or growth substances applied to seedlings, continues to influence growth when the plants are later in other environments. Sugar-beet seeds were germinated at 20 °C in 8, 16 or 24 h photoperiods of constant light intensity, i.e. with different amounts of total radiation. When the seedlings had two leaves (15–18 days old) they were transferred to large pots in the glasshouse. Some seedlings were treated with (2-chloroethyltrimethylammonium chloride) either sprayed on the leaves or applied to the soil, at different times. The treatments affected areas of individual leaves throughout the growing period; plants raised in 24 h photoperiod had the largest leaves, and those in 8 h photoperiod the smallest. Consequently, 24 h plants had most dry matter and 8 h plants least. Plants given most radiation produced leaves fastest and CCC applied early increased the rate, but as the leaves were smaller, except late in 1967, and died sooner, the leaf area duration was less and so yields were less. CCC applied later did not affect leaf production. There was no interaction between amount of radiation and CCC treatment. Twenty-four hour plants had the greatest net assimilation rate (E) early. CCC decreased E early, but increased it later and more when sprayed on the leaves than when applied to the soil. Some factor, possibly pot size, eventually restricted growth and probably diminished the effect of the treatments applied to the seedlings.  相似文献   

18.
The objective was to investigate how nitrogen allocation patterns in plants are affected by their vertical position in the vegetation (i.e. being either dominant or subordinate). A garden experiment was carried out with Amaranthus dubius L., grown from seed, in dense stands in which a size hierarchy of nearly equally aged individuals had developed. A small number of dominant plants had most of their leaf area in the highest layers of the canopy while a larger number of subordinate plants grew in the shade of their dominant neighbours. Canopy structure, vertical patterns of leaf nitrogen distribution and leaf photosynthetic characteristics were determined in both dominant and subordinate plants. The light distribution in the stands was also measured. Average N contents per unit leaf area (total canopy nitrogen divided by the total leaf area) were higher in the dominant than in the subordinate plants and this was explained by the higher average MPA (leaf dry mass per unit area) of the dominant plants. However, when expressed on a weight basis, average N contents (LNCav; total canopy N divided by the total dry weight of leaves) were higher in the subordinate plants. It is possible that these higher LNCav values reflect an imbalance between carbon and nitrogen assimilation with N uptake exceeding its metabolic requirement. Leaf N content per unit area decreased more strongly with decreasing relative photon flux density in the dominant than in the subordinate plants showing that this distribution pattern can be different for plants which occupy different positions in the light gradient in the canopy. The amount of N which is reallocated from the oldest to the younger, more illuminated leaves higher up in the vegetation may depend on the sink strength of the younger leaves for nitrogen. In the subordinate plants, constrained photosynthetic activity caused by shading might have reduced the sink intensity of these leaves.  相似文献   

19.
Population structure, leaf phenology and leaf turnover were followed over a 29-month period in Zamia debilis L.f. ex Aiton (Zamiaceae), an understory species in the Cambalache Forest in northern Puerto Rico. It was not possible to determine plant age or to measure the subterranean stems; size classes based on leaf number and leaf × leaflet number indices were used to determine population structure. Despite seasonal and year to year fluctuations in leaf number at the individual and population level, population profiles remained relatively constant. At any one time, over 50% of the population was composed of unbranched individuals with one or two leaves. Only 7% of the plants were branched. Plants with seven or more leaves comprised at a maximum 8% of the population, but accounted for 28% of the total foliage. Size classes based on leaf number and on a leaf × leaflet index gave approximately reverse J-shaped curves typical of trees with shade tolerant seedlings and saplings. New leaves emerged throughout the year, with a peak at the beginning of the rainy season in May or June and lowest production during the dry months of February through April. Average leaf life expectancy was approximately 2.3 years. Leaf death occurred over an extended period of time by the loss of individual leaflets. Patterns in leaf production and loss differed between few- and many-leaved plants. On the average, as the number of mature leaves on a plant increased, time between emergence of new leaves decreased. In many-leaved plants more than one event of new leaf emergence per year was common. Individuals with one to three mature leaves and individuals with four or more mature leaves differed in their response to water stress: few-leaved plants generally reduced the rate of new leaf production and retained old leaves longer. Plants with more than three leaves continued to produce new leaves, but the rate of leaf mortality increased so that most had a net leaf loss. There was no evidence that leaf emergence or retention were affected by cone production or seed maturation.  相似文献   

20.
In three separate experiments, the upper leaf surface of the fifth formed leaf of wheat cv. Highbury, the fourth and fifth leaves of barley cv. Julia and the third and fourth leaves of oat cv. Mostyn were inoculated in a spore settling tower with wheat brown rust (Puccinia recondita f. sp. tritici), barley brown rust (P. hordei) or oat crown rust (P. coronata f. sp. avenae), respectively. Fewer pustules developed on distal portions of leaves of plants infected with barley yellow dwarf virus (BYDV) than on similar portions of leaves from virus-free plants. There were no significant differences in the number of pustules on proximal leaf portions. In barley and oats, the number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. In wheat, symptoms of BYDV were mild and leaves were little affected by yellowing. The latent period of rust on wheat and oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. In other experiments, BYDV reduced the yield of wheat and oats by 44% and 66%, respectively, while BYDV-infected barley was almost sterile. The appropriate rust reduced the yield of wheat, barley and oats by 33%, 13% and 86%, respectively. When infected with both BYDV and rust, yield of wheat and oats was reduced by 63% and 91%, respectively. Neither BYDV nor rust affected the percentage crude protein content of wheat grain, nor did rust affect that of barley. In oats, BYDV and rust each significantly increased crude protein of grain, but rust infection of BYDV-infected plants tended to reduce it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号