首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
Native alpha 2-macroglobulin (alpha 2M) and alpha 2M-methylamine were immobilized in 96-well microtiter plates. 125I-labeled transforming growth factor-beta 1 (TGF-beta 1) bound to both alpha 2M variants; however, greater binding was observed with alpha 2M-methylamine. Binding of 125I-TGF-beta 1 (0.2 nM) to immobilized alpha 2M-methylamine was inhibited by nonradiolabeled TGF-beta 1 (up to 74% with 0.4 microM TGF-beta 1). Approximately 10% of the TGF-beta 1-alpha 2M-methylamine complex was covalent. Treatment of alpha 2M-methylamine with iodoacetamide prior to immobilization completely eliminated covalent TGF-beta 1 binding; the total amount of 125I-TGF-beta 1-alpha 2M-methylamine complex detected was unchanged. The binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine was not significantly inhibited by increasing the ionic strength to 1.0 M. Binding and complex dissociation were also unaffected by changes in pH within the range 6.9-8.9. Acidic pH dramatically decreased binding and promoted complex dissociation; no binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine was detected at pH 3.5. The interaction of TGF-beta 1 with immobilized alpha 2M-methylamine was not significantly changed by 1.0 mM EDTA or 1.0 mM CaCl2. ZnCl2 (1.0 mM) completely eliminated binding. This result was not due to TGF-beta 1 precipitation or aggregation. Inhibition of 125I-TGF-beta 1 binding to alpha 2M-methylamine was 50% complete (IC50) with 30 microM ZnCl2. Native alpha 2M, thrombospondin, and alpha 2M-methylamine (in solution) decreased binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine. The IC50 values for these three proteins were 520, 160, and 79 nM, respectively. The TGF-beta 1-binding activity of native alpha 2M may have reflected, at least in part, trace-contamination with alpha 2M-proteinase complex.  相似文献   

2.
alpha2-Macroglobulin (alpha2M) inhibits diverse extracellular proteases, binds growth factors such as platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta1 (TGF-beta1), and carries beta-amyloid peptide. alpha2M may also trigger cell signaling by binding to the low density lipoprotein receptor-related protein (LRP-1) and/or other cell surface receptors. Based on studies with recombinant alpha2M fragments expressed in bacteria and synthetic peptides, we previously localized a growth factor-binding site near the center of the alpha2M subunit. However, because intact alpha2M forms a hollow cylinder structure, an alternative model for growth factor binding involves nonspecific entrapment within the alpha2M core. To distinguish between these two models, we engineered mutations in the putative growth factor binding sequence of full-length alpha2M. These mutations did not perturb the tetrameric structure of alpha2M, reaction with proteases, the thiol ester bonds, or binding to LRP-1. A single mutation (E730R) completely blocked binding of platelet-derived growth factor-BB to intact alpha2M. E730R did not alter TGF-beta1 binding; however, this mutation in combination with mutations at Glu714 and Asp719 eliminated the increase in TGF-beta1 binding associated with alpha2M conformational change. These studies demonstrate that growth factor binding to intact alpha2M is specific, involving a defined region of the alpha2M subunit. The exact sequences required for binding different growth factors may be non-identical, mimicking the model of the bait region in which different proteases target adjacent and sometimes overlapping sequences.  相似文献   

3.
alpha(2)-Macroglobulin (alpha(2)M) binds transforming growth factor-beta1 (TGF-beta1) and TGF-beta2, forcing these growth factors into a state of latency. The mechanism by which this occurs remains unclear. In this paper, we demonstrate that peptides, derived from the structure of human alpha(2)M (amino acids 714-729), bind directly to TGF-beta1 and block the binding of TGF-beta1 to the type I and II TGF-beta receptors. The alpha(2)M-derived peptides are notable for hydrophobic tripeptide sequences (WIW or VVV) and acidic residues (Glu(714) and Asp(719) in the mature alpha(2)M subunit), which may function analogously to the structural elements that mediate TGF-beta-binding in the type II receptor. Mutating Glu(714) and Asp(719) in the alpha(2)M-peptide-GST fusion protein, FP3, which contains the putative growth factor-binding site, significantly decreased the binding affinity of FP3 for TGF-beta1. The alpha(2)M-derived peptides, which bind TGF-beta1, inhibited the interaction of TGF-beta1 with its receptors in fetal bovine heart endothelial cells. The same peptides also inhibited the activity of TGF-beta1 in endothelial cell proliferation assays. These results demonstrate that alpha(2)M-derived peptides target the receptor-binding sequence in TGF-beta.  相似文献   

4.
The biological latency of serum transforming growth factor-beta (TGF-beta) was shown to be due to the interaction of TGF-beta with a specific serum binding protein. This binding protein was affinity labeled with 125I-TGF-beta, and its Mr and subunit structure were determined using sodium dodecyl sulfate-gel electrophoresis and gel filtration chromatography. Its Mr is reminiscent of that of the serum protease inhibitor, alpha 2-macroglobulin (alpha 2M). Immunoprecipitation of the 125I-TGF-beta-binding protein complex by a specific anti-alpha 2M antibody, and the formation of identical complexes between 125I-TGF-beta and purified alpha 2M, confirmed that alpha 2M is the TGF-beta-binding protein in serum. Immunoblot analysis showed that endogenous serum TGF-beta is also bound to alpha 2M. However, in contrast to added 125I-TGF-beta, the majority of the endogenous TGF-beta is linked to alpha 2M covalently. Alpha 2M and acid-activated TGF-beta co-eluted from a Superose 6 fast protein liquid chromatography column, confirming that the interaction of TGF-beta with alpha 2M accounts for the latency of serum TGF-beta. It is proposed that alpha 2M may serve an important multifunctional role at sites of inflammation by scavenging both active peptides and proteases that are released by platelets at the site of injury.  相似文献   

5.
The biological activities of transforming growth factor-beta isoforms (TGF-beta(1,2)) are known to be modulated by alpha(2)-macroglobulin (alpha(2)M). alpha(2)M forms complexes with numerous growth factors, cytokines, and hormones, including TGF-beta. Identification of the binding sites in TGF-beta isoforms responsible for high affinity interaction with alpha(2)M many unravel the molecular basis of the complex formation. Here we demonstrate that among nine synthetic pentacosapeptides with overlapping amino acid sequences spanning the entire TGF-beta(1) molecule, the peptide (residues 41-65) containing Trp-52 exhibited the most potent activity in inhibiting the formation of complexes between (125)I-TGF-beta(1) and activated alpha(2)M (alpha(2)M*) as determined by nondenaturing polyacrylamide gel electrophoresis and by plasma clearance in mice. TGF-beta(2) peptide containing the homologous sequence and Trp-52 was as active as the TGF-beta(1) peptide, whereas the corresponding TGF-beta(3) peptide lacking Trp-52, was inactive. The replacement of the Trp-52 with alanine abolished the inhibitory activities of these peptides. (125)I-TGF-beta(3), which lacks Trp-52, bound to alpha(2)M* with an affinity lower than that of (125)I-TGF-beta(1). Furthermore, unlabeled TGF-beta(3) and the mutant TGF-beta(1)W52A, in which Trp-52 was replaced with alanine, were less potent than unlabeled TGF-beta(1) in blocking I(125)-TGF-beta(1) binding to alpha(2)M*. TGF-beta(1) and TGF-beta(2) peptides containing Trp-52 were also effective in inhibiting I(125)-nerve growth factor binding to alpha(2)M*. Tauhese results suggest that Trp-52 is involved in high affinity binding of TGF-beta to alpha(2)M*. They also imply that TGF-beta and other growth factors/cytokines/hormones may form complexes with alpha(2)M* via a common mechanism involving the interactions between topologically exposed Trp and/or other hydrophobic residues and a hydrophobic region in alpha(2)M*.  相似文献   

6.
These studies explore the role of conformational change and exposed carbohydrate residues in the clearance of alpha 2-macroglobulin-trypsin (alpha 2M-T) complexes in the mouse. Human alpha 2-macroglobulin (alpha 2M) was purified and demonstrated to be homogeneous in the electrophoretic "slow" form. Two conformationally altered derivatives, alpha 2M-T and alpha 2-macroglobulin-methylamine (alpha 2M-MeNH2), were prepared and demonstrated to exist in the electrophoretic "fast" form. Radiolabeled alpha 2M-T and alpha 2M-MeNH2 were cleared rapidly with a half-life of 2-4 min following injection into mice. Radiolabeled native alpha 2M, however, remained in the circulation with a half-life of several hours. Both alpha 2M-T and alpha 2M-MeNH2 bound specifically to mouse peritoneal macrophages at 4 degrees C and occupancy of receptor sites increased with increasing time and radioligand concentration. Excess amounts of unlabeled alpha 2M-T or alpha 2M-MeNH2 cross-completed with trace amounts of the other in both clearance studies and binding assays, indicating that both derivatives were removed by the same receptor pathway. The clearance and binding of alpha 2M-T and alpha 2M-MeNH2 were not inhibited by excess amounts of unlabeled asialoorosomucoid, fucosyl-bovine serum albumin, mannosyl-BSA, or N-acetylglucosaminyl-BSA. Our results indicate that the clearance pathway removing alpha 2M-T complexes from the circulation recognizes a fundamental conformational change in alpha 2M secondary to protease binding, which can also be induced by exposure to methylamine. Therefore, other chemical or physical alterations that occur in alpha 2M upon binding trypsin, apart from the conformational change also present in alpha 2M-MeNH2, do not seem necessary for the recognition of alpha 2M-T by cells in the clearance pathway. In addition, this pathway appears distinct from several systems already described mediating clearance of glycoproteins through recognition of terminal galactose, fucose, N-acetylglucosamine, or mannose on oligosaccharide side chains.  相似文献   

7.
alpha(2)-Macroglobulin (alpha(2)M) functions as a proteinase inhibitor and as a carrier of diverse growth factors. In this study, we localized binding sites for platelet-derived growth factor-BB (PDGF-BB) and nerve growth factor-beta (NGF-beta) to a linear sequence in the 180-kDa human alpha(2)M subunit which includes amino acids 591-774. A glutathione S-transferase fusion protein containing amino acids 591-774 (FP3) bound PDGF-BB and NGF-beta in ligand blotting assays whereas five other fusion proteins, which collectively include amino acids 99-590 and 775-1451 did not. The K(D) values for PDGF-BB and NGF-beta binding to immobilized FP3 were 300 +/- 40 and 180 +/- 30 nM, respectively; these values were comparable with those determined using methylamine-modified alpha(2)M, suggesting that higher-order alpha(2)M structure is not necessary for PDGF-BB and NGF-beta binding. PDGF-BB and NGF-beta blocked the binding of transforming growth factor-beta1 (TGF-beta1) to FP3. Furthermore, murinoglobulin, which is the only known member of the alpha-macroglobulin family that does not bind TGF-beta, also failed to bind PDGF-BB and NGF-beta. These results support the hypothesis that either a single linear sequence in human alpha(2)M or overlapping sequences are responsible for the binding of TGF-beta, PDGF-BB, and NGF-beta, even though there is minimal sequence identity between these three growth factors. FP3 blocked the binding of PDGF-BB to a purified chimeric protein, in which the extracellular domain of the PDGF beta receptor was fused to the IgG(1) Fc domain, and to PDGF receptors on NIH 3T3 cells. Thus, FP3 may inhibit the activity of PDGF-BB.  相似文献   

8.
Betaglycan, also known as the transforming growth factor-beta (TGF-beta) type III receptor, is a membrane-anchored proteoglycan that binds TGF-beta via its core protein. Deletion mutagenesis analysis has revealed two regions of betaglycan ectodomain capable of binding TGF-beta: one at the amino-terminal half, the endoglin-related region (López-Casillas, F., Payne, H., Andres, J. L., and Massagué, J. (1994) J. Cell Biol. 124, 557-568), and the other at the carboxyl-terminal half, the uromodulin-related region (Pepin, M.-C., Beauchemin, M., Plamondon, J., and O'Connor-McCourt, M. D. (1994) Proc. Natl. Acad. Sci. U. S. A 91, 6997-7001). In the present work we have functionally characterized these ligand binding regions. Similar to the wild type receptor, both regions bind TGF-beta2 with higher affinity than TGF-beta1. However, only the endoglin-related region increases the TGF-beta2 labeling of the TGF-beta type II receptor, the so-called "TGF-beta -presentation" function of the wild type receptor. Despite this preference, both regions as well as the wild type receptor mediate the TGF-beta2-dependent Smad2 phosphorylation, indicating that they can function indistinguishably as TGF-beta-enhancing co-receptors. On the other hand, we found that the recently described ability of the wild type betaglycan to bind inhibin A is a property of the core protein that resides in the uromodulin-related region. Binding competition experiments indicate that this region binds inhibin and TGF-beta with the following relative affinities: TGF-beta2 > inhibin A > TGF-beta1. All together, the present results suggest that betaglycan ectodomain is endowed with two bona fide independent ligand binding domains that can perform specialized functions as co-receptors of distinct members of the TGF-beta superfamily.  相似文献   

9.
Alpha2-macroglobulin (alpha2M) is a major carrier of transforming growth factor-beta (TGF-beta) in vitro and in vivo. By screening glutathione S-transferase (GST) fusion proteins with overlapping sequences, we localized the TGFbeta-binding site to aa 700-738 of the mature human alpha2M subunit. In separate experiments, we screened overlapping synthetic peptides corresponding to aa 696-777 of alpha2M and identified a single 16-mer (718-733) that binds TGF-beta1. Platelet-derived growth factor-BB (PDGF-BB) bound to the same peptide, even though TGF-beta and PDGF-BB share almost no sequence identity. The sequence of the growth factor-binding peptide, WDLVVVNSAGVAEVGV, included a high proportion of hydrophobic amino acids. The analogous peptide from murinoglobulin, a human alpha2M homologue that does not bind growth factors, contained only three nonconservative amino acid substitutions; however, the MUG peptide failed to bind TGF-beta1 and PDGF-BB. These results demonstrate that a distinct and highly-restricted site in alpha2M, positioned near the C-terminal flank of the bait region, mediates growth factor binding. At least part of the growth factor-binding site is encoded by exon 18 of the alpha2M gene, which is notable for a 5' splice site polymorphism that has been implicated in Alzheimer's Disease.  相似文献   

10.
We have examined the ability of transforming growth factor-beta 1 (TGF-beta 1) to regulate the expression of members of the alpha beta 2 and alpha beta 3 families of integrins. TGF-beta 1 elevates the expression of vitronectin receptors (alpha v beta 3 integrin) in all cells examined including WI-38 human lung fibroblasts, 3T3-L1 mouse fibroblasts, and MG-63 human osteogenic sarcoma cells. TGF-beta 1 action increases the level of mRNA and the synthesis of vitronectin receptor subunits with t1/2 o 3-4 h and 6 h, respectively. TGF-beta 1 up-regulates expression of the intercellular adhesion receptor, LFA-1 (alpha L beta 2), in THP-1 human monocytic leukemia cells by increasing the synthesis of alpha L subunit but not beta 2 subunit. The increase in alpha L synthesis and assembly into LFA-1 complexes induced by TGF-beta 1 occurs in parallel with elevated fibronectin receptor synthesis in THP-1 cells. These responses to TGF-beta 1 are lost upon phorbol ester-induced differentiation of THP-1 cells into the macrophage phenotype. The results suggest a role of TGF-beta in the regulation of cell-matrix interactions mediated by vitronectin receptors and cell-cell interactions mediated by LFA-1 in the immune system.  相似文献   

11.
12.
Affinity labeling and immunoprecipitation studies demonstrate that alpha 2-macroglobulin (alpha 2M) is the major serum-binding protein for transforming growth factors beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2). Purified alpha 2M inhibits the binding of both 125I-TGF-beta 1 and 125I-TGF-beta 2 to cell surface receptors at I50 values of 200 and 10 micrograms/ml, respectively. alpha 2M (200 micrograms/ml) does not block TGF-beta 1 inhibition of CCL-64 mink lung cell growth but reduces this activity of TGF-beta 2 10-fold. The electrophoretic migration of 125I-TGF-beta.alpha 2M complexes on polyacrylamide gels under nondenaturing conditions demonstrates that alpha 2M has 10-fold greater affinity for TGF-beta 2 than for TGF-beta 1. Each of these complexes comigrates as a single band with the fast form of alpha 2M. We suggest that alpha 2M is an important differential regulator of the biological activities of TGF-beta 1 and TGF-beta 2 in vivo.  相似文献   

13.
The binding of 125I-transforming growth factors-beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2) to alpha 2-macroglobulin (alpha 2M) was studied before and after reaction with plasmin, thrombin, trypsin, or methylamine. Complex formation between TGF-beta and native or reacted forms of alpha 2M was demonstrated by non-denaturing polyacrylamide gel electrophoresis and autoradiography. Reaction of native alpha 2M with plasmin or methylamine markedly increased the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2 to alpha 2M. The alpha 2M-plasmin/TGF-beta complexes were minimally dissociated by heparin. Reaction of alpha 2M with thrombin or trypsin reduced the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2; the resulting complexes were readily dissociated by heparin. Complexes between TGF-beta 2 and native or reacted forms of alpha 2M were less dissociable by heparin than the equivalent complexes with TGF-beta 1. These studies demonstrate that the TGF-beta-binding activity of alpha 2M is significantly affected by plasmin, thrombin, trypsin and methylamine. Observations that alpha 2M-plasmin preferentially binds TGFs-beta suggest a mechanism by which alpha 2M may regulate availability of TGFs-beta to target cells in vivo.  相似文献   

14.
The macrophage scavenger receptor, a 220-kDa trimeric membrane glycoprotein, mediates the internalization of modified forms of low density lipoprotein (LDL) such as acetyl-LDL and oxidized-LDL and thus is likely to play a key role in atheroma macrophage foam cell formation. In addition, recent evidence suggests that the scavenger receptor may be an important macrophage binding site for lipopolysaccharide involved in lipopolysaccharide scavenging by macrophages. However, little is known about the regulation of this important receptor. We now report that the induction of scavenger receptor activity (as measured by acetyl-LDL stimulation of intracellular cholesterol esterification) seen in phorbol ester-differentiated THP-1 human macrophages was completely suppressed to the level seen in undifferentiated THP-1 monocytes by picomolar concentrations of transforming growth factor-beta 1 (TGF-beta 1). 125I-Acetyl-LDL degradation was inhibited in a dose-dependent manner by TGF-beta 1, with maximal inhibition (approximately 70%) occurring at 24 pM TGF-beta 1. Scatchard analysis revealed that TGF-beta 1 treatment resulted in a approximately 2-fold decrease in receptor number, and Northern blot analysis of RNA isolated from differentiated THP-1 macrophages demonstrated approximately 2-fold less scavenger receptor mRNA in TGF-beta 1-treated cells compared with that in macrophages not treated with TGF-beta 1. Since TGF-beta 1 is thought to be present in both atherosclerotic and inflammatory lesions, the above findings may have physiological relevance regarding the regulation of atheroma foam cell formation and/or the regulation of lipopolysaccharide clearance by macrophages.  相似文献   

15.
Ectopic expression of the alpha5 integrin subunit in cancer cells with little or no endogenous expression of this integrin often results in reduced proliferation as well as reduced malignancy. We now show that inhibition resulting from ectopic expression of alpha5 integrin is due to induction of autocrine negative transforming growth factor-beta (TGF-beta) activity. MCF-7 breast cancer cells do not express either alpha5 integrin or type II TGF-beta receptor and hence are unable to generate TGF-beta signal transduction. Ectopic expression of alpha5integrin expression enhanced cell adhesion to fibronectin, reduced proliferation, and increased the expression of type II TGF-beta receptor mRNA and cell surface protein. Receptor expression was increased to a higher level in alpha5 transfectants by growth on fibronectin-coated plates. Induction of type II TGF-beta receptor expression also resulted in the generation of autocrine negative TGF-beta activity because colony formation was increased after TGF-beta neutralizing antibody treatment. Transient transfection with a TGF-beta promoter response element in tandem with a luciferase cDNA into cells stably transfected with alpha5 integrin resulted in basal promoter activities 5-10-fold higher than those of control cells. Moreover, when alpha5 transfectants were treated with a neutralizing antibody to either TGF-beta or integrin alpha5, this increased basal promoter activity was blocked. Autocrine TGF-beta activity also induced 3-fold higher endogenous fibronectin expression in alpha5 transfectants relative to that of control cells. Re-expression of type II receptor by alpha5 transfection also restored the ability of the cells to respond to exogenous TGF-beta and led to reduced tumor growth in athymic nude mice. Taken together, these results show for the first time that TGF-beta type II receptor expression can be controlled by alpha5beta1 ligation and integrin signal transduction. Moreover, TGF-beta and integrin signal transduction appear to cooperate in their tumor-suppressive functions.  相似文献   

16.
17.
Characterization of the three mammalian transforming growth factor-beta (TGF-beta) isoforms, TGF-beta 1, -beta 2, and -beta 3, indicates that TGF-beta 3 is somewhat more potent (ED50 = 0.5 pM versus 2 pM) than TGF-beta 1 and TGF-beta 2 as a growth inhibitor of the Mv1Lu mink lung epithelial cell line. In the fetal bovine heart endothelial (FBHE) cell line, however, TGF-beta 1 and -beta 3 are at least 50-fold more potent than TGF-beta 2 which is a very weak growth inhibitor (ED50 greater than or equal to 0.5 nM). Thus, as growth inhibitors, TGF-beta 1 and -beta 3 resemble each other more than TGF-beta 2. The presence of serum alpha 2-macroglobulin in the FBHE cell assays decreases the biological potency of TGF-beta s, in particular TGF-beta 2. This effect of alpha 2-macroglobulin, however, is not sufficient to explain the low responsiveness of FBHE cells to TGF-beta 2. Evaluation of the role of TGF-beta receptors as determinants of cell-specific responsiveness to TGF-beta isoforms indicates that TGF-beta 1, -beta 2, and -beta 3 have similar affinity for the membrane proteoglycan, betaglycan. They differ, however, in their ability to bind to receptor types I and II which are implicated in TGF-beta signal transduction. TGF-beta 1 is similar, albeit not identical, to TGF-beta 3 and much more potent than TGF-beta 2 as a competitor for binding to the overall population of receptors I and II in all cell lines tested. A subset of receptors I and II has been identified in Mv1Lu cells which has high affinity for TGF-beta 2 (KD approximately 10 pM) and binds this factor at concentrations that are biologically active in Mv1Lu cells. This receptor subset could not be detected in FBHE cells, suggesting that cell-specific differences in the level of high affinity of TGF-beta 2 receptors may lead to cell-specific differences in responsiveness to this isoform. Thus, despite their structural and biological similarities, TGF-beta 1, -beta 2, and -beta 3 diverge in their ability to bind to receptors in a manner that correlates with their potency as growth inhibitors.  相似文献   

18.
Transforming growth factor-beta (TGF-beta) exhibits diverse regulatory roles in the immune system and has been described as a potent inhibitor of lymphocyte and hemopoietic progenitor cell growth. The present studies investigated the effects of TGF-beta 1 on murine T cell proliferation triggered through the T cell receptor/CD3 complex. In contrast to previously reported T cell growth inhibition, TGF-beta 1 costimulated splenic T cell proliferation in the presence of immobilized anti-CD3 antibody 2C11, with maximal effect at anti-CD3 concentration of 50 micrograms/ml. Although TGF-beta 1 induced a modest increase in IL-2R display, TGF-beta 1 co-stimulated proliferation was largely independent of IL-2 and/or IL-4. Anti-IL-2 and/or anti-IL-4 antibody did not significantly block the TGF-beta 1 co-stimulated T cell growth, and no IL-2 or IL-4 bioactivity was detected in TGF-beta 1 co-stimulated cultures. TGF-beta 1 did not enhance IL-2 mRNA expression beyond control levels. However, TGF-beta 1 co-stimulation caused an accelerated evolution of a memory or mature T cell population phenotype. Both CD4+ and CD8+ T cell subsets were significantly enriched for cells of the mature CD45RBloPgp-1hi phenotype, in comparison with T cells stimulated by anti-CD3 alone or with PMA, and CD8+ T cells predominated. These results thus provide initial evidence that TGF-beta 1 is capable of bifunctional T cell growth regulation, which occurs largely via an IL-2- and IL-4-independent pathway.  相似文献   

19.
20.
Transforming growth factor-beta1 (TGF-beta1) is a key cytokine involved in the pathogenesis of fibrosis in many organs. We previously demonstrated in renal proximal tubular cells that the engagement of the extracellular polysaccharide hyaluronan with its receptor CD44 attenuated TGF-beta1 signaling. In the current study we examined the potential mechanism by which the interaction between hyaluronan (HA) and CD44 regulates TGF-beta receptor function. Affinity labeling of TGF-beta receptors demonstrated that in the unstimulated cells the majority of the receptor partitioned into EEA-1-associated non-lipid raft-associated membrane pools. In the presence of exogenous HA, the majority of the receptors partitioned into caveolin-1 lipid raft-associated pools. TGF-beta1 increased the association of activated/phosphorylated Smad proteins with EEA-1, consistent with activation of TGF-beta1 signaling following endosomal internalization. Following addition of HA, caveolin-1 associated with the inhibitory Smad protein Smad7, consistent with the raft pools mediating receptor turnover, which was facilitated by HA. Antagonism of TGF-beta1-dependent Smad signaling and the effect of HA on TGF-beta receptor associations were inhibited by depletion of membrane cholesterol using nystatin and augmented by inhibition of endocytosis. The effect of HA on TGF-beta receptor trafficking was inhibited by inhibition of HA-CD44 interactions, using blocking antibody to CD44 or inhibition of MAP kinase activation. In conclusion, we have proposed a model by which HA engagement of CD44 leads to MAP kinase-dependent increased trafficking of TGF-beta receptors to lipid raft-associated pools, which facilitates increased receptor turnover and attenuation of TGF-beta1-dependent alteration in proximal tubular cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号