首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
2.
Profound alterations in the function of GABA occur over the course of postnatal development. Changes in GABA(A) receptor expression are thought to contribute to these differences in GABAergic function, but how subunit changes correlate with receptor function in individual developing neurons has not been defined precisely. In the current study, we correlate expression of 14 different GABA(A) receptor subunit mRNAs with changes in the pharmacological properties of the receptor in individual hippocampal dentate granule cells over the course of postnatal development in rat. We demonstrate significant developmental differences in GABA(A) receptor subunit mRNA expression, including greater than two-fold lower expression of alpha1-, alpha4- and gamma2-subunit mRNAs and 10-fold higher expression of alpha5-mRNA in immature compared with adult neurons. These differences correlate both with regional changes in subunit protein level and with alterations in GABA(A) receptor function in immature dentate granule cells, including two-fold higher blockade by zinc and three-fold lower augmentation by type-I benzodiazepine site modulators. Further, we find an inverse correlation between changes in GABA(A) receptor zinc sensitivity and abundance of vesicular zinc in dentate gyrus during postnatal development. These findings suggest that developmental differences in subunit expression contribute to alterations in GABA(A) receptor function during postnatal development.  相似文献   

3.
The gamma-aminobutyric acid type C (GABA(C)) receptor is a ligand-gated chloride channel with distinct physiological and pharmacological properties. Although the exact subunit composition of native GABA(C) receptors has yet to be firmly established, there is general agreement that GABA rho subunits participate in their formation. Recent studies on white perch suggest that certain GABA rho subunits can co-assemble with the GABA(A) receptor gamma2 subunit to form a heteromeric receptor with electrophysiological properties that correspond more closely to the native GABA(C) receptor on retinal neurons than any of the homomeric rho receptors. In the present study we examined the interactions among various perch GABA rho and gamma2 subunits. When co-expressed in Xenopus oocytes, the gamma2 subunit co-immunoprecipitated with Flag-tagged perch rho1A, rho1B, and rho2B subunits, but not with the Flag-tagged perch rho2A subunit. Immunocytochemical studies indicated that the membrane surface expression of the gamma2 subunit was detected only when it was co-expressed with perch rho1A, rho1B, or rho2B subunit, but not with the perch rho2A subunit or when expressed alone. In addition, co-immunoprecipitation of perch rho1B and gamma2 subunits was also detected in protein samples of the teleost retina. Taken together, these findings suggest that a heteromeric rho(gamma2) receptor could represent one form of GABA(C) receptor on retinal neurons.  相似文献   

4.
Rat forebrain synaptosomes were extracted with Triton X-100 at 4 degrees C and the insoluble material, which is enriched in post-synaptic densities (PSDs), was subjected to sedimentation on a continuous sucrose gradient. Two pools of Triton X-100-insoluble gamma-aminobutyric acid type-A receptors (GABA(A)Rs) were identified: (i) a higher-density pool (rho = 1.10-1.15 mg/mL) of GABA(A)Rs that contains the gamma2 subunit (plus alpha and beta subunits) and that is associated to gephyrin and the GABAergic post-synaptic complex and (ii) a lower-density pool (rho = 1.06-1.09 mg/mL) of GABA(A)Rs associated to detergent-resistant membranes (DRMs) that contain alpha and beta subunits but not the gamma2 subunit. Some of these GABA(A)Rs contain the delta subunit. Two pools of GABA(A)Rs insoluble in Triton X-100 at 4 degrees C were also identified in cultured hippocampal neurons: (i) a GABA(A)R pool that forms clusters that co-localize with gephyrin and remains Triton X-100-insoluble after cholesterol depletion and (ii) a GABA(A)R pool that is diffusely distributed at the neuronal surface that can be induced to form GABA(A)R clusters by capping with an anti-alpha1 GABA(A)R subunit antibody and that becomes solubilized in Triton X-100 at 4 degrees C after cholesterol depletion. Thus, there is a pool of GABA(A)Rs associated to lipid rafts that is non-synaptic and that has a subunit composition different from that of the synaptic GABA(A)Rs. Some of the lipid raft-associated GABA(A)Rs might be involved in tonic inhibition.  相似文献   

5.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABA(A) receptor (GABA(A)R alpha 1 beta 3 gamma 2). There is strong evidence that the heteropentameric receptor contains two alpha 1, two beta 3, and one gamma 2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 configurations. Here we use molecular modeling to thread the relevant GABA(A)R subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABA(A) sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABA(A) sequences were threaded onto the AChBP template in the gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangements. Only the gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangement satisfied three known criteria: (1) alpha 1 His(102) binds at the gamma 2 subunit interface in proximity to gamma 2 residues Thr(142), Phe(77), and Met(130); (2) alpha 1 residues 80-100 bind near gamma 2 residues 91-104; and (3) alpha 1 residues 58-67 bind near the beta 3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

6.
We have expressed the alpha4beta3delta and alpha4beta3gamma2L subtypes of the rat GABAA receptor in Xenopus oocytes and have investigated their agonist activation properties. GABA was a more potent agonist of the alpha4beta3delta receptor (EC50 approximately 1.4 micromol/L) than of the alpha4beta3gamma2L subtype (EC50 approximately 27.6 micromol/L). Other GABAA receptor agonists (muscimol, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, imidazole-4-amino acid) displayed similar subtype selectivity. The structural determinants underlying these differences have been investigated by co-expressing chimeric delta/gamma2L subunits with alpha4 and beta3 subunits. A stretch of amino acids in the delta subunit, S238-V264, is shown to play an important role in determining both agonist potency and the efficacies of full or partial agonists. This segment includes transmembrane domain 1 and the short intracellular loop that leads to the second transmembrane domain. The effects of the competitive antagonists, bicuculline and SR95531, and the channel blocker, picrotoxin, were not significantly affected by the incorporation of chimeric subunits. As the delta and gamma2L subunits have not been previously implicated directly in agonist binding, we suggest that the effects are likely to arise from changes in the transduction mechanisms that link agonist binding to channel activation.  相似文献   

7.
GABA(A) receptors in the CNS are pentameric molecules composed of alpha, beta, gamma, delta, epsilon and theta subunits. Studies on transfected cells have shown that GABA(A) receptor beta subunit isoforms can direct alpha1 subunit localization within the cell. To examine the role of selected subunits in governing GABA(A) receptor expression in neurons, cultures of rat cerebellar granule cells were grown with antisense or sense oligodeoxynucleotides (ODNs) specific for the alpha 1, beta 2 or gamma 2 subunits. These subunits are all expressed in granule neurons where they are thought to contribute to an abundant receptor type. Following ODN treatment, subunit expression and distribution were examined by western blotting, immunocytochemistry and RT-PCR. Treatment of the cultures with the antisense, but not the corresponding sense, ODNs reduced the levels of the targeted subunit polypeptides. In addition, the beta 2 antisense ODN reduced the level of the alpha1 subunit polypeptide without altering the level of its mRNA. In contrast, treatment with the beta 2 subunit antisense ODN did not alter gamma 2 subunit polypeptide expression, distribution or mRNA level. These findings suggest that the alpha1 subunit requires a beta subunit for assembly into GABA(A) receptors in cerebellar granule neurons.  相似文献   

8.
Type A gamma-aminobutyric acid receptors (GABA(A)), the major sites of fast synaptic inhibition in the brain, are believed to be composed predominantly of alpha, beta, and gamma subunits. Although cell surface expression is essential for GABA(A) receptor function, little is known regarding its regulation. To address this issue, the membrane stability of recombinant alpha(1)beta(2) or alpha(1)beta(2)gamma(2) receptors was analyzed in human embryonic kidney cells. Alpha(1)beta(2)gamma(2) but not alpha(1)beta(2) receptors were found to recycle constitutively between the cell surface and a microtubule-dependent, perinuclear endosomal compartment. Similar GABA(A) receptor endocytosis was also seen in cultured hippocampal and cortical neurons. GABA(A) receptor surface levels were reduced upon protein kinase C (PKC) activation. Like basal endocytosis, this response required the gamma(2) subunit but not receptor phosphorylation. Although inhibiting PKC activity did not block alpha(1)beta(2)gamma(2) receptor endocytosis, it did prevent receptor down-regulation, suggesting that PKC activity may block alpha(1)beta(2)gamma(2) receptor recycling to the cell surface. In agreement with this observation, blocking recycling from endosomes with wortmannin selectively reduced surface levels of gamma(2)-containing receptors. Together, our results demonstrate that the surface stability of GABA(A) receptors can be dynamically and specifically regulated, enabling neurons to modulate cell surface receptor number upon the appropriate cues.  相似文献   

9.
GABA(A) receptor function was studied in cerebral cortical vesicles prepared from rats after intracerebroventricular microinjections of antisense oligodeoxynucleotides (aODNs) for alpha1, gamma2, beta1, beta2 subunits. GABA(A) receptor alpha1 subunit aODNs decreased alpha1 subunit mRNA by 59+/-10%. Specific [3H]GABA binding was decreased by alpha1 or beta2 subunit aODNs (to 63+/-3% and 64+/-9%, respectively) but not changed by gamma2 subunit aODNs (94+/-5%). Specific [3H]flunitrazepam binding was increased by alpha1 or beta2 subunit aODNs (122+/-8% and 126+/-11%, respectively) and decreased by gamma2 subunit aODNs (50+/-13%). The "knockdown" of specific subunits of the GABA(A )receptor significantly influenced GABA-stimulated 36Cl- influx. Injection of alpha1 subunit aODNs decreased basal 36Cl- influx and the GABA Emax; enhanced GABA modulation by diazepam; and decreased antagonism of GABA activity by bicuculline. Injection of gamma2 subunit aODNs increased the GABA Emax; reversed the modulatory efficacy of diazepam from enhancement to inhibition of GABA-stimulation; and reduced the antagonist effect of bicuculline. Injection of beta2 subunit aODNs reduced the effect of diazepam whereas treatment with beta1 subunit aODNs had no effect on the drugs studied. Conclusions from our studies are: (1) alpha1 subunits promote, beta2 subunits maintain, and gamma2 subunits suppress GABA stimulation of 36Cl- influx; (2) alpha1 subunits suppress, whereas beta2, and gamma2 subunits promote allosteric modulation by benzodiazepines; (3) diazepam can act as an agonist or inverse agonist depending on the relative composition of the receptor subunits: and (4) the mixed competitive/non-competitive effects of bicuculline result from activity at alpha1 and gamma2 subunits and the lack of activity at beta1 and beta2 subunits.  相似文献   

10.
The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.  相似文献   

11.
12.
13.
Changes in GABA receptor (GABA(A)R) gene expression are detected in animal models of epilepsy, anxiety and in post-mortem schizophrenic brain, suggesting a role for GABA(A)R regulation in neurological disorders. Persistent (48 h) exposure of brain neurons in culture to GABA results in down-regulation of GABA(A)R number and uncoupling of GABA and benzodiazepine (BZD) binding sites. Given the central role of GABA(A)Rs in fast inhibitory synaptic transmission, GABA(A)R down-regulation and uncoupling are potentially important mechanisms of regulating neuronal excitability, yet the molecular mechanisms remain unknown. In this report we show that treatment of brain neurons in culture with tetrodotoxin, glutamate receptor antagonists, or depolarization with 25 mM K(+) fails to alter GABA(A)R number or coupling. Changes in neuronal activity or membrane potential are therefore not sufficient to induce either GABA(A)R down-regulation or uncoupling. Nifedipine, a voltage-gated Ca(2+) channel (VGCC) blocker, inhibits both GABA-induced increases in [Ca(2+)](i) and GABA(A)R down-regulation, suggesting that VGCC activation is required for GABA(A)R down-regulation. Depolarization with 25 mM K(+) produces a sustained increase in intracellular [Ca(2+)] without causing GABA(A)R down-regulation, suggesting that activation of VGCCs is not sufficient to produce GABA(A)R down-regulation. In contrast to GABA(A)R down-regulation, nifedipine and 25 mM K(+) fail to inhibit GABA-induced uncoupling, demonstrating that GABA-induced GABA(A)R down-regulation and uncoupling are mediated by independent molecular events. Therefore, GABA(A)R activation initiates at least two distinct signal transduction pathways, one of which involves elevation of intracellular [Ca(2+)] through VGCCs.  相似文献   

14.
Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1)beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

15.
16.
The major isoform of the gamma-aminobutyric acid type A (GABA(A)) receptor is thought to be composed of 2alpha(1), 2beta(2), and 1gamma(2) subunit(s), which surround the ion pore. Definite evidence for the subunit arrangement is lacking. We show here that GABA(A) receptor subunits can be concatenated to a trimer that can be functionally expressed upon combination with a dimer. Many combinations did not result in the functional expression. In contrast, four different combinations of triple subunits with dual subunit constructs, all resulting in the identical pentameric receptor gamma(2)beta(2)alpha(1)beta(2)alpha(1), could be successfully expressed in Xenopus oocytes. We characterized the functional properties of these receptors in respect to agonist, competitive antagonist, and diazepam sensitivity. All properties were similar to those of wild type alpha(1)beta(2)gamma(2) GABA(A) receptors. Thus, together with information on the crystal structure of the homologous acetylcholine-binding protein (Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., (2001) Nature 411, 269-276, we provide evidence for an arrangement gamma(2)beta(2)alpha(1)beta(2)alpha(1), counterclockwise when viewed from the synaptic cleft. Forced subunit assembly will also allow receptors containing different subunit isoforms or mutant subunits to be expressed, each in a desired position. The methods established here should be applicable to the entire ion channel family comprising nicotinic acetylcholine, glycine, and 5HT(3) receptors.  相似文献   

17.
We have investigated the age-dependent modifications in the expression of eight different subunits of the gamma-aminobutyric acid, type A (GABA(A)) receptor (alpha1, alpha2, alpha3, alpha5, beta2, beta3, gamma2S, and gamma2L) and all four subunits of the alpha-amino-3-hydroxy-5-methylsoxazole-4-propionate (AMPA) receptor (GluR1-4) in the hippocampus of 24-month-old rats. All aged hippocampi displayed a remarkable increase (aged/adult ratio, 3.53 +/- 0.54) in the mRNA levels of the short version of the gamma2 subunit in parallel with a similar increase in the gamma2 subunit protein (aged/adult ratio, 2.90 +/- 0.62). However, this increase was not observed in the mature receptor. On the other hand, the expression of the different alpha subunit mRNAs increased moderately with aging, displaying a heterogeneous pattern. The most frequent modification consisted in an increase in the expression of the alpha1 subunit mRNA (aged/adult ratio, 1.26 +/- 0.18), in parallel with a similar increase on the alpha1 protein (aged/adult ratio, 1. 27 +/- 0.12) and in the alpha1 incorporated to the assembled GABA(A) receptor (tested by immunoprecipitation; aged/adult ratio, = 1.20 +/- 0.10). However, in the same hippocampal samples, no major modifications were observed on the expression of the AMPA receptor subunits. As a whole, these results indicated the existence of an increased expression of the GABA(A) receptor subunits and a preservation of the AMPA receptor at the hippocampal formation. These modifications could reflect the existence of specific deficiencies (neuronal loss and/or deafferentiation) on the GABAergic system in the aged rats.  相似文献   

18.
The majority of fast inhibitory neurotransmission in the CNS is mediated by the GABA type-A (GABAA) receptor, a ligand-gated chloride channel. Of the approximately 20 different subunits composing the hetero-pentameric GABAA receptor, the gamma2 subunit in particular seems to be important in several aspects of GABAA receptor function, including clustering of the receptor at synapses. In this study, we report that the intracellular loop of the gamma2 subunit interacts with itself as well as with gamma1, gamma3 and beta1-3 subunits, but not with the alpha subunits. We further show that gamma2 subunits interact with photolabeled pentameric GABAA receptors composed of alpha1, beta2/3 and gamma2 subunits, and calculate the dissociation constant to be in the micromolar range. By using deletion constructs of the gamma2 subunit in a yeast two-hybrid assay, we identified a 23-amino acid motif that mediates self-association, residues 389-411. We confirmed this interaction motif by inhibiting the interaction in a glutathione-S-transferase pull-down assay by adding a corresponding gamma2-derived peptide. Using similar approaches, we identified the interaction motif in the gamma2 subunit mediating interaction with the beta2 subunit as a 47-amino acid motif that includes the gamma2 self-interacting motif. The identified gamma2 self-association motif is identical to the interaction motif reported between GABAA receptor and GABAA receptor-associated protein (GABARAP). We propose a model for GABAA receptor clustering based on GABARAP and GABAA receptor subunit-subunit interaction.  相似文献   

19.
The subunit combinations alpha1beta2gamma2, alpha6beta2gamma2, and alpha1alpha6beta2gamma2 of the GABA(A) receptor were functionally expressed in Xenopus oocytes. The properties of the resulting ion currents were characterized by using electrophysiological techniques. The concentration-response curve of the channel agonist GABA for alpha1alpha6beta2gamma2 showed a single apparent component characterized by an EC(50) of 107 +/- 26 microM (n = 4). It was different from the one for alpha1beta2gamma2, which had an EC(50) of 41 +/- 9 microM (n = 4), that for alpha6beta2gamma2, with an EC(50) of 6.7 +/- 1.9 microM (n = 5), and those for alpha1beta2 and alpha1alpha6beta2. There was no appreciable functional expression of alpha6beta2. Allosteric responses of alpha1alpha6beta2gamma2 to diazepam were intermediate to those of alpha1beta2gamma2 and alpha6beta2gamma2, and allosteric responses to flumazenil were comparable to the ones for alpha1beta2gamma2. The inhibition by furosemide of the currents elicited by GABA in alpha1alpha6beta2gamma2 [IC(50) = 298 +/- 116 microM (n = 7), assuming only one component] was not identical with inhibition of alpha6beta2gamma2 (IC(50) = 38 +/- 2 microM, n = 4), alpha1beta2gamma2 (IC(50) = 5,610 +/- 910 microM, n = 5), or a mixture of these components (assuming two components). These findings indicate unambiguously the formation of functional GABA(A) receptors containing two different alpha subunits, alpha1 and alpha6, with properties different from those of alpha1beta2gamma2 and alpha6beta2gamma2. Furthermore, we provide evidence for the facts that in the Xenopus oocyte (a) the formation of the different receptor types depends on the relative abundance of cRNAs coding for the different receptor subunits and (b) that functional dual subunit combinations alphabeta do not form in the presence of cRNA coding for the gamma subunit.  相似文献   

20.
gamma-Aminobutyric acidA (GABAA) receptors are multisubunit ligand-gated ion channels which mediate neuronal inhibition by GABA and are composed of at least four subunit types (alpha, beta, gamma, and delta). The gamma 2-subunit appears to be essential for benzodiazepine modulation of GABAA receptor function. In cloning murine gamma 2-subunits, we isolated cDNAs encoding forms of the subunit that differ by the insertion of eight amino acids. LLRMFSFK, in the major intracellular loop between proposed transmembrane domains M3 and M4. The two forms of the gamma 2-subunit are generated by alternative splicing, as demonstrated by cloning and partial sequencing of the corresponding gene. The eight-amino-acid insertion encodes a potential consensus serine phosphorylation site for protein kinase C. These results suggest a novel mechanism for the regulation of the GABAA receptor by protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号