首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
 利用稳定同位素技术和Keeling Plot方法可以有效分割地表蒸散量, 进而加深对陆地生态系统水循环的理解。该研究通过原位连续测定麦田的水汽同位素数据, 评价Keeling Plot方法在分割地表蒸散中的应用, 并揭示华北冬小麦(Triticum aestivum)蒸腾在总蒸散中的比例。实验于2008年3–5月在中国科学院栾城农业生态站进行, 利用国际上先进的H218O、HD16O激光痕量气体分析仪(TDLAS)为基础构建的大气水汽18O/16O和D/H同位素比原位连续观测系统, 同时利用涡度相关技术、真空抽提技术、同位素质谱仪技术, 获取了必要的数据。研究分析了一天中不同时间段的连续的大气水汽δ18O与水汽浓度倒数拟合Keeling Plot曲线的差异和可能的原因。结果显示, 中午时段的拟合结果较好, 这也暗示中午时段蒸腾速率高时最可能满足植物蒸腾的同位素稳定态假设。进一步的分析发现植物蒸腾的同位素稳定态并不总是成立, 尤其是水分胁迫下进入成熟期的小麦, 其蒸腾水汽同位素一般处于非稳定态。利用同位素分割结果显示, 生长盛期麦田94%–99%的蒸散来源于植物蒸腾。  相似文献   

2.
利用稳定同位素技术和Keeling Plot方法可以有效分割地表蒸散量, 进而加深对陆地生态系统水循环的理解。该研究通过原位连续测定麦田的水汽同位素数据, 评价Keeling Plot方法在分割地表蒸散中的应用, 并揭示华北冬小麦(Triticum aestivum)蒸腾在总蒸散中的比例。实验于2008年3–5月在中国科学院栾城农业生态站进行, 利用国际上先进的H218O、HD16O激光痕量气体分析仪(TDLAS)为基础构建的大气水汽18O/16O和D/H同位素比原位连续观测系统, 同时利用涡度相关技术、真空抽提技术、同位素质谱仪技术, 获取了必要的数据。研究分析了一天中不同时间段的连续的大气水汽δ18O与水汽浓度倒数拟合Keeling Plot曲线的差异和可能的原因。结果显示, 中午时段的拟合结果较好, 这也暗示中午时段蒸腾速率高时最可能满足植物蒸腾的同位素稳定态假设。进一步的分析发现植物蒸腾的同位素稳定态并不总是成立, 尤其是水分胁迫下进入成熟期的小麦, 其蒸腾水汽同位素一般处于非稳定态。利用同位素分割结果显示, 生长盛期麦田94%–99%的蒸散来源于植物蒸腾。  相似文献   

3.
孙守家  孟平  张劲松  何春霞  郑宁 《生态学报》2015,35(8):2592-2601
利用稳定同位素技术对华北低丘山区栓皮栎生态系统氧同位素日变化及蒸散定量区分进行研究,为华北低丘山区森林生态系统水汽交换研究提供基础。试验采用离轴积分腔输出光谱技术(OA-ICOS)连续测定生态系统不同高度水汽浓度和δ18O值,同时采用真空提取和液态水同位素分析仪测定枝条和土壤的δ18O值。结果显示,4个晴天中大气水汽浓度日变化复杂,变化趋势差异大,而δ18O日变化均成高-低-高的"V"型变化,最小值出现在12:00—18:00。Keeling方程在10:00—12:00的相关系数R2均大于0.71,方程达到极显著水平,表明此时段蒸腾速率较高,满足植物蒸腾的同位素稳定态假设。利用Keeling方程估算的栓皮栎生态系统δET值有相似的低-高-低日变化,与大气的δv值变化趋势相反。同位素分割结果显示栓皮栎生态系统中蒸腾占蒸散比例日变化呈现低-高-低的趋势,10:00—14:00蒸腾占蒸散比例达到90%以上,尽管6:00—10:00和14:00—18:00的蒸腾占蒸散比例下降,但平均值仍高达69.38%,表明华北低丘山区栓皮栎生态系统的蒸散主要来源于植物蒸腾。  相似文献   

4.
叶片水H2^18O富集的研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
植物叶片水H2^18O富集对大气中O2和CO2的^18O收支有着重要影响。蒸腾作用使植物叶片水H2^18O富集,而植物叶片水H2^18O富集的程度主要受大气水汽δ^18O和植物蒸腾水汽δ^18O的影响。过去,通过引入稳态假设(蒸腾δ^18O等于茎水δ^18O)得到Craig-Gordon模型的闭合形式,或将植物整个叶片水δ^18O经过Peclet效应校正后得到植物叶片水δ^18O的富集程度。然而,在几分钟到几小时的短时间尺度上,植物叶片蒸腾δ^18O是变化的,稳态假设是无法满足的。最近成功地实现了对大气水汽δ^18O和δD的原位连续观测,观测精度(小时尺度)可达到甚至优于稳定同位素质谱仪的观测精度。在非破坏性条件下,高时间分辨率和连续的大气水汽δ^18O和蒸腾δ^18O的动态观测,将提高植物叶片水H2^18O富集的预测能力。该文综述了植物叶片水H2^18O富集的理论研究的新进展、研究焦点和观测方法所存在的问题,旨在进一步加深理解植物叶片水H2^18O富集的过程及其机制。  相似文献   

5.
为了全面认识森林生态系统蒸散各组分及其对蒸散的贡献率在日尺度上的变化规律,本研究利用同位素稳态和非稳态假设理论结合水同位素分析仪系统,对生长季侧柏林生态系统蒸散各组分进行了定量拆分和比较。结果表明: 4个测定日(2016年8月5、8、10、11日)不同来源水体的18O都呈现表层土壤水氧同位素组成(δS)>枝条水氧同位素组成(δX)>大气水汽氧同位素组成(δV),说明三者可能因同位素分馏效应表现出明显的差异。土壤蒸发水汽氧同位素组成(δE)在日尺度上为-26.89‰~-59.68‰,整体上呈现出先上升后下降的变化趋势;森林生态系统蒸散水汽氧同位素组成(δET)为-15.99‰~-10.04‰,稳态(ISS)下植物蒸腾水汽氧同位素组成(δT-ISS)为-12.10‰~-9.51‰,而非稳态(NSS)下植物蒸腾水汽氧同位素组成(δT-NSS)为-13.02‰~-7.23‰,在日时间尺度上δET与δT-NSS全天的变化趋势一致,在11:00—17:00 δET、δT-ISS与δT-NSS三者的变化趋势近似一致。总体上,植物蒸腾量对蒸散量的贡献率表现为FT-ISS 79.1%~98.7%,而FT-NSS 88.7%~93.7%。这表明研究区土壤蒸发耗水远小于植被蒸腾耗水,植被蒸腾在林地蒸散中起主导作用。  相似文献   

6.
加拿大温带落叶林生态系统氢氧同位素组成研究   总被引:3,自引:0,他引:3  
陆地生态系统氢氧稳定同位素能为陆地与大气的水分交换和陆地生态系统水文循环研究提供独特的示踪信息。基于2009年生长季加拿大落叶林生态系统氢氧稳定同位素组成及环境要素的观测数据,分析了生态系统不同来源液态水和大气水汽同位素组成的时空变化特征,分析了生态系统蒸散与土壤蒸发的同位素组成和同位素通量(Isoflux)的变化特征,并讨论了主要的环境控制因素。结果表明,生态系统中不同来源液态水的同位素组成差别较大,与枝条水和土壤水相比,叶片水同位素组成最富集且变化幅度最大。大气水汽H_2~(18)O和HDO同位素组成随着高度升高而降低,水汽同位素值日变化呈"W"型分布,上午水汽同位素值降低,正午有一定的起伏,傍晚回升。水汽同位素组成与大气湿度有显著的相关性,大气水汽过量氘下午均值与表面相对湿度和水汽混合比的相关系数分别为-0.61(P0.01)和-0.57(P0.01)。受蒸腾速率和叶水同位素富集程度的共同作用,白天蒸散H_2~(18)O组成在正午和傍晚高,下午低。Isoflux的计算结果表明白天下垫面蒸散有助于大气水汽同位素富集,蒸散同位素通量最高可达147.5 mmol m~(-2)s~(-1)‰。本研究结果能为同位素水文模型提供数据支持和理论参考。  相似文献   

7.
叶片水H218O富集的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
 植物叶片水H218O富集对大气中O2和CO218O收支有着重要影响。蒸腾作用使植物叶片水H218O富集, 而植物叶片水H218O富集的程度主 要受大气水汽δ18O和植物蒸腾水汽δ18O的影响。过去, 通过引入稳态假设(蒸腾δ18O等于茎水δ18O)得到Craig-Gordon模型的闭合形式, 或 将植物整个叶片水δ18O经过Péclet效应校正后得到植物叶片水δ18O的富集程度。然而, 在几分钟到几小时的短时间尺度上, 植物叶片蒸腾 δ18O是变化的, 稳态假设是无法满足的。最近成功地实现了对大气水汽δ18O和δD的原位连续观测, 观测精度(小时尺度)可达到甚至优于稳定 同位素质谱仪的观测精度。在非破坏性条件下, 高时间分辨率和连续的大气水汽δ18O和蒸腾δ18O的动态观测, 将提高植物叶片水H218O富集的 预测能力。该文综述了植物叶片水H218O富集的理论研究的新进展、研究焦点和观测方法所存在的问题, 旨在进一步加深理解植物叶片水H218O 富集的过程及其机制。  相似文献   

8.
植物水的稳定同位素分馏过程是水在土壤-植物-大气连续体中循环的重要环节。以往研究由于叶片水18O同位素比值(δ~(18)O l,b)和氘(D)同位素比值(δDl,b)(合称δl,b)实测数量少只能作为模型验证数据,导致δl,b富集机制研究多集中于模型研究,缺乏基于野外试验条件的δl,b富集的控制机制研究。叶片水δDl,b和δ~(18)O l,b的富集程度(ΔDl,b和Δ18O l,b,合称Δl,b)通常表示为δl,b与茎秆水D同位素比值(δDx)和18O同位素比值(δ~(18)Ox)(合称δx)之差,即Δl,b=δl,b–δx。该研究以黑河中游沙漠绿洲春玉米(Zea mays)生态系统为研究对象,重点采集和分析了季节和日尺度δl,b和δx数据,配套开展了大气水汽δ~(18)O和δD(合称δv)等辅助变量的原位连续观测,探讨了季节和日尺度上的δl,b富集特征及其影响因素。结果表明:叶片水δl,b和Δl,b的季节变化趋势不明显,而受蒸腾作用影响表现出白天富集夜间贫化的单峰日变化特征。对于D来说,无论季节尺度上还是日尺度上,大气水汽δv和相对湿度是δDl,b和ΔDl,b的主要环境控制因素;而对于18O来说,无论季节尺度上还是日尺度上,相对湿度是δ~(18)O l,b和Δ18O l,b的主要环境控制因素。由于D和18O在热力学平衡分馏上有约8倍差异,直接分析叶片水ΔDl,b和Δ18Ol,b与影响因素的差异性,有助于理解叶片水δD和δ~(18)O富集过程以及对模型发展有一定的指导意义。  相似文献   

9.
兰州城区绿化植物稳定氢氧同位素特征   总被引:1,自引:0,他引:1  
选取兰州城区14个公共绿地作为采样点,采集了常绿植物侧柏(Platycladus orientalis)、大叶黄杨(Buxus megistophylla)以及落叶植物国槐(Sophora japonica)、连翘(Forsythia suspensa)的叶片、木质部,结合兰州市气象局提供的西北师范大学新校区自动气象站的监测数据,分析了4种植物叶片和木质部水稳定氢氧同位素的时间变化和空间差异,讨论了其与气温、风速、相对湿度、气压的相关性。结果表明:与常绿植物相比,落叶植物叶片水δ~(18)O更富集,而落叶植物和常绿植物木质部水δ~(18)O在采样期的变化较平缓且与叶片水δ~(18)O的变化趋势相似;4种植物叶片水d变化趋势均与δ~(18)O的变化趋势相反;植物的叶片水蒸腾线斜率和截距与兰州市大气水线相差甚远,且大叶黄杨叶片水和木质部水的蒸腾线斜率最小;常绿植物和落叶植物叶片水δ~(18)O、d与各气象要素的相关性是相反的,其中叶片水δ~(18)O和d与风速和气压的相关性较好。  相似文献   

10.
碳(CO_2、CH_4)、氮(N_2O)和水汽(H_2O)等温室气体的交换通量是生态系统物质循环的核心,是地圈-生物圈-大气圈相互作用的纽带。稳定同位素光谱和质谱技术和方法的进步使碳稳定同位素比值(δ~(13)C)和氧稳定同位素比值(δ~(18)O)(CO_2)、δ~(13)C(CH_4)、氮稳定同位素比值(δ~(15)N)和δ~(18)O (N_2O)、氢稳定同位素比值(δD)和δ~(18)O (H_2O)的观测成为可能,与箱式通量观测技术和方法结合可以实现土壤、植物乃至生态系统尺度温室气体及其同位素通量观测研究。该综述以CO_2及其δ~(13)C通量的箱式观测技术和方法为例,概述了箱式通量观测系统的基本原理及分类,阐述了系统设计的理论要求和假设,综述了从野外到室内土壤、植物叶-茎-根以及生态系统尺度箱式通量观测研究的应用进展及问题,展望了气体分析精度和准确度、观测数据精度和准确度以及观测数据的代表性评价在箱式通量观测研究中的重要性。  相似文献   

11.
稳定性同位素技术和Keeling曲线法是现代生态学研究的重要手段和方法之一。稳定性同位素能够整合生态系统复杂的生物学、生态学和生物地球化学过程在时间和空间尺度上对环境变化的响应。Keeling曲线法是以生物过程前后物质平衡理论为基础,将CO2或H2O的同位素组成(δDδ13C或δ18O)与其对应浓度测量结合起来,将生态系统净碳通量区分为光合固定和呼吸释放通量,或将整个生态系统水分蒸散区分为植物蒸腾和土壤蒸发。在全球尺度上,稳定性同位素技术、Keeling曲线法与全球尺度陆地生态系统模型相结合,还可区分陆地生态系统和海洋生态系统对全球碳通量的贡献以及不同植被类型(C3或C4)在全球CO2同化量中所占的比例。然而,生态系统的异质性使得稳定性同位素技术和Keeling曲线法从冠层尺度外推到生态系统、区域或全球尺度时存在有一定程度的不确定性。此外,取样时间、地点的选取也会影响最终的研究结果。尽管如此,随着分析手段的不断精确和研究方法的日趋完善,稳定性同位素技术和Keeling曲线法与其它测量方法(如微气象法)的有机结合将成为未来陆地生态系统碳/水交换研究的重要手段和方法之一。  相似文献   

12.
森林的土壤-植物-大气连续体(SPAC)是陆地重要的水循环连续界面过程。本研究通过分析亚热带常绿阔叶林的降水、大气水汽、土壤水、叶片水的同位素组成,探讨森林SPAC系统水分的氢氧同位素组成特征以及植物蒸腾与叶片性状和环境因子的关系。结果表明: 研究区大气降水、土壤水、竹柏枝条水、竹柏叶片水和大气水汽的δD-δ18O线性回归方程分别为: δDP=7.97δ18OP+12.68(R2=0.97)、δDS=4.29δ18OS-18.62(R2=0.81)、δDB=3.31δ18OB-29.73(R2=0.49)、δDL=1.49δ18OL-10.09(R2=0.81)、δDV=3.89δ18OV-51.29(R2=0.46)。在降水→土壤水→植物水的界面水输送过程中,氢氧同位素逐渐富集,而从土壤蒸发和从植物蒸腾的水汽同位素贫化。在降水和蒸发作用的影响下,土壤水同位素随深度增加有贫化的趋势,而且整体上旱季土壤水同位素比雨季富集。观测期间,枝条水同位素比土壤水略微富集,说明水分在植物体内运输过程中存在受到蒸腾富集作用的可能性。旱季,乔木的枝条水同位素比灌木贫化,说明根系分布更深的乔木植物更倾向于利用深层土壤水。由于在叶片性状、蒸腾速率以及对环境因子的响应程度等方面存在差异,不同植物的叶片水同位素组成随叶龄增长的变化特征有所不同。雨季的环境条件更有利于叶片蒸腾,使雨季的叶片水同位素比旱季富集。叶片水同位素组成与植物叶片含水量呈正相关关系,与相对湿度呈负相关关系,综合反映了植物应对环境变化的水分调控功能。  相似文献   

13.
蔡越  邢万秋  王卫光  吴宇桐  陈顼 《生态学报》2023,43(19):8076-8086
采集2021年生长季和非生长季新安江源区常绿针叶林土壤-植物-大气多源水样进行氢氧稳定同位素测试,分析不同来源水分同位素组成(δ18O和δ2H)的差异及变化特征,评估不同季节多水源采样方案(植物不同部位、土壤不同深度)对蒸散发组分区分的影响程度,进而优化我国南方湿润区森林生态系统蒸散组分区分的氢氧稳定同位素采样方案。结果显示:多源水δ18O和δ2H在土壤-植物的水分传输过程中逐渐富集,非生长季较生长季更为富集。植物各部位水分的动力学分馏强度随着同位素不断富集而逐渐增大。河道水与山泉水同位素组成分布较为接近,大气水汽相较于其他水源明显最为贫化。土壤水同位素组成垂向分布主要呈现三种不同的规律:随深度增加而减小、先增大后减小或先减小后增大。浅层土壤水同位素组成变化范围大于深层土壤水,拐点位于50—90 cm。由植物各部位与土壤的水同位素组成分布特征及其差异可知符合同位素稳态假设的杉木最佳取样部位为韧皮部。比较基于不同深度土壤蒸发水汽同位素组成δE计算得出的T/ET(蒸腾与蒸散发比率)...  相似文献   

14.
羊草群落的水分利用   总被引:2,自引:0,他引:2  
羊草(Leymus chinensis (Trin.)Tzvel.)群落的土壤水分具有明显的成层性:O-40cm是根系集中分布层,受降水和蒸散的直接影响,称为蒸散与降水相互作用层;40-120cm贮水变化滞后于根系层贮水和群落蒸散的季节变化,称为主要贮水层;120cm以下称为水分相对稳定/平衡层。1996年属平水年,生长季末土壤水盈余18mm;1998年属丰水年,在连续强降雨时发生渗漏,生长季末土壤水亏缺15mm。蒸腾-蒸散比(T/ET)不仅反映群落的繁茂和活力,而且反映植物对环境水资源的利用状况。1998年8月T/ET值较小(0.5),6月达O.7,7月受降水少影响而有所降低(O.6),8月水分利用效率达到最大(O.9),9月降到O.6。水分利用效率(WUE)在良好的水分条件下(1998年),主要受植物自身生长速度的限制,其季节变化与生长大周期吻合。深入分析WUE和T/ET的内涵,提出蒸散效率(ETE)的概念,能更好地反映植物对环境水资源利用的状况或程度,具有实际意义。  相似文献   

15.
稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响   总被引:1,自引:0,他引:1  
稳定氢氧同位素可有效示踪区域降水水汽来源,旱季降水补给对大规模哈尼梯田的持续存在具有重大影响。以哈尼梯田世界遗产核心区的全福庄河流域为研究对象,在2015年11月—2016年4月间的旱季期间逐月采集处于不同海拔的7个样点的降水样品42个,分析其稳定氢氧同位素组成的变化及其影响因子,并利用后向轨迹模型(HYSPLIT)追踪其水汽来源。结果表明:1)该区局地大气降水线方程为δD=7.31δ~(18)O+19.8 (R~2=0.94,P0.01,n=42),斜率较全球降水线小而截距偏大,说明研究区有多个水汽来源地。2)旱季降水δ~(18)O和d-excess在前期快速富集,后期δ~(18)O富集的速度减缓,d-excess则快速降低,体现出水汽来源具有时间差异,但两者在空间变化上不明显。3)旱季降水δ~(18)O与降水量、温度和相对湿度的多元线性回归方程为:δ~(18)O=-0.002P-0.86T-0.39H+38.22 (R~2=0.96,P=0.05),表明其变化是多因素综合影响的结果。4)结合δ~(18)O、d-excess和HYSPLIT模型分析,该区旱季主要有3条水汽来源路径,其中西风南支和局地水汽补给较少,占优势的西南季风除2月份外其余各月占70%左右。5)研究区旱季降水量总体较少,但西南季风在11月带来的降水为"灌水养田"提供了水源,在4月的降水为"冲水肥田"和"栽插准备"活动提供了必要水源,从而保障了梯田旱季的用水需求。  相似文献   

16.
 土壤蒸发δ18O (δE)是影响大气水汽δ18O (δv)变异的重要因素, 也是农田生态系统蒸散组分土壤蒸发和植物蒸腾拆分的核心科学问题之一。δE主要基于Craig-Gordon模型计算, 主要受地表大气水汽δv、相对湿度(h)、平衡和动力学分馏系数以及土壤蒸发前缘液态水δ18O (δs)的影响。该研究以华北平原冬小麦(Triticum aestivum)-夏玉米(Zea mays)生态系统大气水汽δv的原位连续观测数据为基础, 同时结合不同深度的土壤日变化采样, 综合探讨了δE的日变化特征及其影响因素。结果表明: 冬小麦和夏玉米生长季δE的日变化表现为双峰曲线, 分别在6:00和15:00左右达到峰值。h强烈影响农田生态系统δE, 特别是在h > 95%的高相对湿度环境条件下Craig-Gordon模型并不适用。大气水汽δv的原位连续观测技术克服了传统的降水平衡预测大气水汽δv方法的不确定性, 可以显著提高δE的准确性。不同的平衡分馏系数对δE的结果无显著影响。不同的动力分馏系数尤其是考虑湍流扩散对动力分馏系数的影响会显著影响δE的模拟结果。土壤蒸发前缘的确定直接影响δs和标准化到土壤蒸发前缘温度下的h, 显著影响δE的准确性。结合动态箱或静态箱与稳定同位素红外光谱连续观测技术直接测定δE, 从而避免模型参数化过程引入的不确定性是未来研究的重要方向。  相似文献   

17.
基于SPAC系统干旱区水分循环和水分来源研究方法综述   总被引:3,自引:0,他引:3  
土壤-植物-大气连续体(SPAC)是研究植物水分利用与循环的核心,研究其水分传输过程对于旱区植被恢复具有重要指导意义.本文从土壤水分和植物蒸腾两个方面进行阐述,对土壤水分的研究主要涉及热惯量法、中子仪法和时域反射仪法,植物蒸腾则从枝叶尺度、单木尺度、林分尺度和区域尺度4个层面分类总结;并重点介绍了稳定同位素方法在研究植物不同水分来源中的应用.  相似文献   

18.
稳定同位素红外光谱(IRIS)技术克服了传统的大气CO_2气瓶采样-同位素质谱(IRMS)技术时间分辨率低且耗时费力的缺点,可以实现高时间分辨率和高精度的大气CO_2碳同位素组成(δ~(13)C)和氧同位素组成(δ~(18)O)的原位连续测定。基于IRIS技术测量CO_2δ~(13)C和δ~(18)O的误差来源主要包括δ~(13)C和δ~(18)O测量值对CO_2浓度变化的非线性响应(浓度依赖性)以及对环境条件变化的敏感性导致的漂移(时间漂移)。如何有效地校正浓度依赖性和时间漂移导致的误差是IRIS仪器应用的前提。该综述阐述了δ~(13)C和δ~(18)O测量值的浓度依赖性产生的理论基础,回顾了浓度依赖性的理论校正和经验方程校正方法和应用;回顾了时间漂移的校正原理、方法和应用;概述了数据溯源至国际标准的原理、方法与应用现状。结合实际情况推荐利用3个或3个以上已知CO_2浓度和δ~(13)C、δ~(18)O真值的CO_2标准气体涵盖待测气体CO_2浓度的浓度依赖性校正,设置适当的校正频率校正时间漂移并进行数据溯源。指出应该加强不同仪器和校正方法的比对研究;采用IRIS技术测定CH_4、N_2O和H_2O同位素组成也可以采取类似的校正方法。  相似文献   

19.
羊草(Leymus chinensis (Trin.)Tzvel.)群落的土壤水分具有明显的成层性:0~40 cm是根系集中分布层,受降水和蒸散的直接影响,称为蒸散与降水相互作用层;40~120 cm贮水变化滞后于根系层贮水和群落蒸散的季节变化,称为主要贮水层;120 cm以下称为水分相对稳定/平衡层.1996年属平水年,生长季末土壤水盈余18 mm;1998年属丰水年,在连续强降雨时发生渗漏,生长季末土壤水亏缺15 mm.蒸腾-蒸散比(T/ET)不仅反映群落的繁茂和活力,而且反映植物对环境水资源的利用状况.1998年8月T/E7值较小(0.5),6月达0.7,7月受降水少影响而有所降低(0.6),8月水分利用效率达到最大(0.9),9月降到0.6.水分利用效率(WUE)在良好的水分条件下(1998年),主要受植物自身生长速度的限制,其季节变化与生长大周期吻合.深入分析WUE和T/E的内涵,提出蒸散效率(ETE)的概念,能更好地反映植物对环境水资源利用的状况或程度,具有实际意义.  相似文献   

20.
夏永秋  邵明安 《生态学报》2008,28(4):1376-1382
应用热脉冲技术在黄土高原神木县六道沟小流域于2006年6月13至25日测定了两种不同密度柠条(Caragana korshinskii)群落的树干液流动态.同时测量了土壤水分、太阳辐射、大气温度、相对湿度、风速、水汽压亏缺和作物参考蒸散等环境因子,并根据植物蒸腾的P-M公式,反推计算冠层导度.结果表明,除风速外,柠条树木液流与太阳辐射、大气温度、相对湿度、水汽压亏缺、作物参考蒸散均显著相关,且可用太阳辐射的线性表达式来估测.不同密度群落的日蒸腾量随叶面积指数增大而增加,叶面积指数为2.3的群落平均日蒸腾为3.83mm d-1m-2,而叶面积指数为1.1的林分平均日蒸腾1.64mm d-1m-2.冠层导度与气象因子关系复杂,当土壤水分不存在亏缺时,冠层导度与太阳辐射、大气温度、作物参考蒸散因子显著相关,与水汽亏缺和相对湿度因子无相关性;当土壤水分存在亏缺时,冠层导度与太阳辐射、大气温度、作物参考蒸散因子无相关关系,而与水汽亏缺和相对湿度因子显著相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号