首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
孙守家  孟平  张劲松  何春霞  郑宁 《生态学报》2015,35(8):2592-2601
利用稳定同位素技术对华北低丘山区栓皮栎生态系统氧同位素日变化及蒸散定量区分进行研究,为华北低丘山区森林生态系统水汽交换研究提供基础。试验采用离轴积分腔输出光谱技术(OA-ICOS)连续测定生态系统不同高度水汽浓度和δ18O值,同时采用真空提取和液态水同位素分析仪测定枝条和土壤的δ18O值。结果显示,4个晴天中大气水汽浓度日变化复杂,变化趋势差异大,而δ18O日变化均成高-低-高的"V"型变化,最小值出现在12:00—18:00。Keeling方程在10:00—12:00的相关系数R2均大于0.71,方程达到极显著水平,表明此时段蒸腾速率较高,满足植物蒸腾的同位素稳定态假设。利用Keeling方程估算的栓皮栎生态系统δET值有相似的低-高-低日变化,与大气的δv值变化趋势相反。同位素分割结果显示栓皮栎生态系统中蒸腾占蒸散比例日变化呈现低-高-低的趋势,10:00—14:00蒸腾占蒸散比例达到90%以上,尽管6:00—10:00和14:00—18:00的蒸腾占蒸散比例下降,但平均值仍高达69.38%,表明华北低丘山区栓皮栎生态系统的蒸散主要来源于植物蒸腾。  相似文献   

2.
蔡越  邢万秋  王卫光  吴宇桐  陈顼 《生态学报》2023,43(19):8076-8086
采集2021年生长季和非生长季新安江源区常绿针叶林土壤-植物-大气多源水样进行氢氧稳定同位素测试,分析不同来源水分同位素组成(δ18O和δ2H)的差异及变化特征,评估不同季节多水源采样方案(植物不同部位、土壤不同深度)对蒸散发组分区分的影响程度,进而优化我国南方湿润区森林生态系统蒸散组分区分的氢氧稳定同位素采样方案。结果显示:多源水δ18O和δ2H在土壤-植物的水分传输过程中逐渐富集,非生长季较生长季更为富集。植物各部位水分的动力学分馏强度随着同位素不断富集而逐渐增大。河道水与山泉水同位素组成分布较为接近,大气水汽相较于其他水源明显最为贫化。土壤水同位素组成垂向分布主要呈现三种不同的规律:随深度增加而减小、先增大后减小或先减小后增大。浅层土壤水同位素组成变化范围大于深层土壤水,拐点位于50—90 cm。由植物各部位与土壤的水同位素组成分布特征及其差异可知符合同位素稳态假设的杉木最佳取样部位为韧皮部。比较基于不同深度土壤蒸发水汽同位素组成δE计算得出的T/ET(蒸腾与蒸散发比率)...  相似文献   

3.
利用稳定同位素技术对植物叶片水18O同位素组成(δL,b)进行研究,可以为植物叶片生理及森林水文的研究提供理论参考。本研究连续监测北京山区侧柏人工林生态系统冠层大气水汽浓度(Wa)和大气水汽18O同位素值组成(δv),结合测定的侧柏枝条水18O同位素组成(δx)和δL,b,分析了动力学分馏系数εk1(32%)和εk2(28%)对δL,b的预测效果。结果表明: 侧柏人工林生态系统Wa日变化无明显规律,大气相对湿度(RH)日变化呈“V”型,气孔导度(gs)在日尺度上先增大后减小;同位素接近稳态时(正午前后),δL,b略有增加,Wa、RH、gs与δL,b均呈显著负相关关系;同位素接近稳态条件下,将不同动力学分馏系数εk1、εk2应用于Craig-Gordon模型,预测δL,b,εk2的预测值更接近δL,b的实测值,表明εk2应用于模型更符合北京山区侧柏叶片水同位素富集情况。研究结果将加深对叶片水同位素富集模型、蒸散拆分模型的认识。  相似文献   

4.
森林的土壤-植物-大气连续体(SPAC)是陆地重要的水循环连续界面过程。本研究通过分析亚热带常绿阔叶林的降水、大气水汽、土壤水、叶片水的同位素组成,探讨森林SPAC系统水分的氢氧同位素组成特征以及植物蒸腾与叶片性状和环境因子的关系。结果表明: 研究区大气降水、土壤水、竹柏枝条水、竹柏叶片水和大气水汽的δD-δ18O线性回归方程分别为: δDP=7.97δ18OP+12.68(R2=0.97)、δDS=4.29δ18OS-18.62(R2=0.81)、δDB=3.31δ18OB-29.73(R2=0.49)、δDL=1.49δ18OL-10.09(R2=0.81)、δDV=3.89δ18OV-51.29(R2=0.46)。在降水→土壤水→植物水的界面水输送过程中,氢氧同位素逐渐富集,而从土壤蒸发和从植物蒸腾的水汽同位素贫化。在降水和蒸发作用的影响下,土壤水同位素随深度增加有贫化的趋势,而且整体上旱季土壤水同位素比雨季富集。观测期间,枝条水同位素比土壤水略微富集,说明水分在植物体内运输过程中存在受到蒸腾富集作用的可能性。旱季,乔木的枝条水同位素比灌木贫化,说明根系分布更深的乔木植物更倾向于利用深层土壤水。由于在叶片性状、蒸腾速率以及对环境因子的响应程度等方面存在差异,不同植物的叶片水同位素组成随叶龄增长的变化特征有所不同。雨季的环境条件更有利于叶片蒸腾,使雨季的叶片水同位素比旱季富集。叶片水同位素组成与植物叶片含水量呈正相关关系,与相对湿度呈负相关关系,综合反映了植物应对环境变化的水分调控功能。  相似文献   

5.
利用稳定同位素技术和Keeling Plot方法可以有效分割地表蒸散量,进而加深对陆地生态系统水循环的理解.该研究通过原位连续测定麦田的水汽同位素数据,评价Keeling Plot方法在分割地表蒸散中的应用,并揭示华北冬小麦(Triticum aes-tivum)蒸腾在总蒸散中的比例.实验于2008年3-5月在中国科学院栾城农业生态站进行,利用国际上先进的H_2~(18)O、HD~(16)O激光痕量气体分析仪(TDLAS)为基础构建的大气水汽~(18)O/~(16)O和D/H同位素比原位连续观测系统,同时利用涡度相关技术、真空抽提技术、同位素质谱仪技术,获取了必要的数据.研究分析了一天中不同时间段的连续的大气水汽δ~(18)O与水汽浓度倒数拟合Keeling Plot曲线的差异和可能的原因.结果显示,中午时段的拟合结果较好,这也暗示中午时段蒸腾速率高时最可能满足植物蒸腾的同位素稳定态假设.进一步的分析发现植物蒸腾的同位素稳定态并不总是成立,尤其是水分胁迫下进入成熟期的小麦,其蒸腾水汽同位素一般处于非稳定态.利用同位素分割结果显示,生长盛期麦田94%-99%的蒸散来源于植物蒸腾.  相似文献   

6.
加拿大温带落叶林生态系统氢氧同位素组成研究   总被引:3,自引:0,他引:3  
陆地生态系统氢氧稳定同位素能为陆地与大气的水分交换和陆地生态系统水文循环研究提供独特的示踪信息。基于2009年生长季加拿大落叶林生态系统氢氧稳定同位素组成及环境要素的观测数据,分析了生态系统不同来源液态水和大气水汽同位素组成的时空变化特征,分析了生态系统蒸散与土壤蒸发的同位素组成和同位素通量(Isoflux)的变化特征,并讨论了主要的环境控制因素。结果表明,生态系统中不同来源液态水的同位素组成差别较大,与枝条水和土壤水相比,叶片水同位素组成最富集且变化幅度最大。大气水汽H_2~(18)O和HDO同位素组成随着高度升高而降低,水汽同位素值日变化呈"W"型分布,上午水汽同位素值降低,正午有一定的起伏,傍晚回升。水汽同位素组成与大气湿度有显著的相关性,大气水汽过量氘下午均值与表面相对湿度和水汽混合比的相关系数分别为-0.61(P0.01)和-0.57(P0.01)。受蒸腾速率和叶水同位素富集程度的共同作用,白天蒸散H_2~(18)O组成在正午和傍晚高,下午低。Isoflux的计算结果表明白天下垫面蒸散有助于大气水汽同位素富集,蒸散同位素通量最高可达147.5 mmol m~(-2)s~(-1)‰。本研究结果能为同位素水文模型提供数据支持和理论参考。  相似文献   

7.
稳定性同位素技术和Keeling曲线法是现代生态学研究的重要手段和方法之一。稳定性同位素能够整合生态系统复杂的生物学、生态学和生物地球化学过程在时间和空间尺度上对环境变化的响应。Keeling曲线法是以生物过程前后物质平衡理论为基础,将CO2或H2O的同位素组成(δDδ13C或δ18O)与其对应浓度测量结合起来,将生态系统净碳通量区分为光合固定和呼吸释放通量,或将整个生态系统水分蒸散区分为植物蒸腾和土壤蒸发。在全球尺度上,稳定性同位素技术、Keeling曲线法与全球尺度陆地生态系统模型相结合,还可区分陆地生态系统和海洋生态系统对全球碳通量的贡献以及不同植被类型(C3或C4)在全球CO2同化量中所占的比例。然而,生态系统的异质性使得稳定性同位素技术和Keeling曲线法从冠层尺度外推到生态系统、区域或全球尺度时存在有一定程度的不确定性。此外,取样时间、地点的选取也会影响最终的研究结果。尽管如此,随着分析手段的不断精确和研究方法的日趋完善,稳定性同位素技术和Keeling曲线法与其它测量方法(如微气象法)的有机结合将成为未来陆地生态系统碳/水交换研究的重要手段和方法之一。  相似文献   

8.
利用稳定同位素技术和Keeling Plot方法可以有效分割地表蒸散量, 进而加深对陆地生态系统水循环的理解。该研究通过原位连续测定麦田的水汽同位素数据, 评价Keeling Plot方法在分割地表蒸散中的应用, 并揭示华北冬小麦(Triticum aestivum)蒸腾在总蒸散中的比例。实验于2008年3–5月在中国科学院栾城农业生态站进行, 利用国际上先进的H218O、HD16O激光痕量气体分析仪(TDLAS)为基础构建的大气水汽18O/16O和D/H同位素比原位连续观测系统, 同时利用涡度相关技术、真空抽提技术、同位素质谱仪技术, 获取了必要的数据。研究分析了一天中不同时间段的连续的大气水汽δ18O与水汽浓度倒数拟合Keeling Plot曲线的差异和可能的原因。结果显示, 中午时段的拟合结果较好, 这也暗示中午时段蒸腾速率高时最可能满足植物蒸腾的同位素稳定态假设。进一步的分析发现植物蒸腾的同位素稳定态并不总是成立, 尤其是水分胁迫下进入成熟期的小麦, 其蒸腾水汽同位素一般处于非稳定态。利用同位素分割结果显示, 生长盛期麦田94%–99%的蒸散来源于植物蒸腾。  相似文献   

9.
以贵州凤冈麻湾洞洞穴生态系统为研究对象,运用δ~(13)C、δ~(15)N测定了洞穴动物及其有机碳源的同位素比值,分析了洞穴生态系统的营养级关系及洞穴动物食源。结果表明:洞内植物δ~(13)C范围为-41. 78‰~-38. 80‰,较洞外植物低;δ~(15)N范围为-1. 31‰~1.23‰,在洞外陆源有机质δ~(15)N范围内;洞穴土壤有机质的δ~(13)C范围为-31. 09‰~-24.95‰,δ~(15)N范围为-1.08‰~7.72‰;洞穴动物δ~(13)C范围为-30.41‰~-12.02‰,δ~(15)N范围为2.07‰~8.94‰;洞穴土壤有机质对动物的食源贡献率超过72%,远高于植物对动物的食源贡献率,即洞穴土壤有机质是洞穴动物的主要食物来源。麻湾洞生态系统主要由4个营养层次组成:植物为第一营养层次;闪夜蛾、螺类、马陆类处于第二营养层次;裸灶螽、长头地蜈蚣处于第三营养层次;蜘蛛类处于第三或第四营养层次。即大部分同种(或同类群)动物在洞穴中所处的营养级位置相对稳定,少部分同种动物在不同光带或同种类群的不同种动物在同一光带所处的营养级位置有差异。  相似文献   

10.
鳀是重要的渔业资源捕捞对象,同时也是生态系统营养动力学研究的关键种。基于2020年和2008—2009年东海区采集的鳀样品,结合胃含物分析和肌肉碳、氮稳定同位素技术,分析了鳀的食物组成、食性昼夜差异、不同发育阶段的食性转变及其营养级,研究鳀的摄食生态。胃含物分析显示,鳀主要摄食浮游甲壳类和小型鱼类,优势饵料依次为太平洋磷虾[相对重要指数百分比(IRI)=87.6%,出现频率(F)=57.6%]、小拟哲水蚤(IRI=3.2%,F=15.3%)和细足法虫戎(IRI=2.1%,F=13.1%);同位素分析显示,桡足类是鳀的主要食物来源,其次是磷虾类,端足类的食源贡献率最小,不足1%。鳀食物组成昼夜差异明显,摄食强度白天比晚上高,下午最高,午夜最低;叉长90 mm是鳀食性转变的拐点,小于90 mm的鳀主要摄食浮游动物,大于90 mm的鳀主要摄食浮游动物,兼食小型鱼类。鳀的δ13C值范围为-21.66‰~-18.14‰,平均值为(-19.92±0.86)‰;δ15N值范围为4.07‰~10.78‰,平均值为(8.14±2.48)‰;鳀的δ13C和δ15N比值与叉长呈极显著正相关。基于胃含物分析的鳀营养级为3.4,基于δ15N稳定同位素的鳀营养级为2.7。本研究可为中上层小型鱼类在生态系统中的营养地位提供参考依据,为构建食物网营养通道提供基础资料。  相似文献   

11.
本研究以哈尼梯田文化景观遗产核心区的全福庄河小流域为对象,对在2015年5月—2016年4月间逐月采集的森林景观类型和梯田景观类型下12个样点的地表水样品进行氢氧稳定同位素组成和效应分析。结果表明: 1)在地表水氢氧稳定同位素组成上,森林斑块δ18O平均值小于梯田斑块,森林斑块δ18O随时间的变化幅度也小于梯田斑块;2)研究区地表水δ18O除8月和3月外,均具有显著的海拔效应,其一元线性回归方程为:δ18O=-0.012H+13.84(r=-0.83, n=12);3)地表水δ18O海拔梯度为-1.2‰·(100 m)-1,但并不是受降水影响的“真”海拔梯度,而是森林斑块和梯田斑块间地表水δ18O景观梯度影响下的海拔梯度;4)在森林-梯田的景观格局组合下,森林斑块与梯田斑块间的地表水δ18O值差异增强了海拔效应。因此,当流域景观格局异质性强时,地表水稳定同位素效应会被强化或者出现完全相反的同位素效应。  相似文献   

12.
河水氢氧稳定同位素特征是研究水体转化和示踪水循环过程的重要内容.为研究河水氢氧稳定同位素特征,揭示河水补给来源,于2017年4—8月对亚热带农业小流域脱甲河4级河段(S_1、S_2、S_3和S_4)水体氢(D)、氧(18O)稳定同位素进行了监测,分析其时空动态特征和过量氘(d-excess)的变化规律,并探讨了它们与降水、高程和水质等影响因子的相关关系.结果表明:δD、δ18O和d-excess的变化范围分别在-43.17‰^-26.43‰(-35.50‰±5.44‰)、-7.94‰^-5.70‰(-6.86‰±0.74‰)和16.77‰~23.49‰(19.39‰±1.95‰).受季风环流的影响,δD和δ18O具有明显的季节变化特征,即春季(δD和δ18O为-29.88‰±3.31‰和-6.18‰±0.57‰)>夏季(δD和δ18O为-39.25‰±2.65‰和-7.32‰±0.42‰);空间上,δD和δ18O表现出明显的沿程变化,随着采样点的位置到河流源头的距离波动增加,δD为S_118O为S_118O与水温呈显著负相关(δD:r=-0.92;δ18O:r=-0.88);δ18O与海拔呈显著负相关(r=-0.96);在空间上,δ18O与水温呈显著正相关(r=0.98);δD和δ18O与降水量呈不显著负相关.  相似文献   

13.
Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ13C) of soil respiration (δJ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (<1 ‰) in near‐surface soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3–7; and (c) a second period of enrichment (1–2‰) in years 8–10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more 13C‐depleted deeper in the soil than near the surface, while the bulk soil followed the well‐established pattern of 13C‐enrichment at depth. Overall, differences in δJ between mortality classes (<1‰) and soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰).  相似文献   

14.
The combined use of a gas‐exchange system and laser‐based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non‐steady‐state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open‐field scenarios, is unsuited for use in a gas‐exchange cuvette environment where isotope composition of water vapour (δv) is intrinsically linked to that of transpiration (δE). Here, we modified the F&C model to make it directly compatible with the δv–δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of ‘net‐flux’ (rather than ‘gross‐flux’ as suggested by the original F&C model)‐based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv. There is an increasing popularity among plant ecophysiologists to use a gas‐exchange system coupled to laser‐based isotope measurement for investigating non‐steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas‐exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv) being constant and independent of that of transpiration (δE). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated with a cuvette setting. Using an experiment conducted on cotton leaves, we show that the modified NSS model performed well in predicting the time constant for the exponential approach of leaf water toward steady state under cuvette conditions. Such a result demonstrates the applicability of this new model to gas‐exchange cuvette conditions where the transpiration flux directly influences δv, and therefore suggests the need to incorporate this model into future isotope studies that employ a laser‐cuvette coupled system.  相似文献   

15.
The use of stable isotopes to study ecosystem gas exchange   总被引:24,自引:0,他引:24  
Stable isotopes are a powerful research tool in environmental sciences and their use in ecosystem research is increasing. In this review we introduce and discuss the relevant details underlying the use of carbon and oxygen isotopic compositions in ecosystem gas exchange research. The current use and potential developments of stable isotope measurements together with concentration and flux measurements of CO2 and water vapor are emphasized. For these applications it is critical to know the isotopic identity of specific ecosystem components such as the isotopic composition of CO2, organic matter, liquid water, and water vapor, as well as the associated isotopic fractionations, in the soil-plant- atmosphere system. Combining stable isotopes and concentration measurements is very effective through the use of ”Keeling plots.” This approach allows the identification of the isotopic composition and the contribution of ecosystem, or ecosystem components, to the exchange fluxes with the atmosphere. It also allows the estimation of net ecosystem discrimination and soil disequilibrium effects. Recent modifications of the Keeling plot approach permit examination of CO2 recycling in ecosystems. Combining stable isotopes with dynamic flux measurements requires precision in isotopic sampling and analysis, which is currently at the limit of detection. Combined with the micrometeorological gradient approach (applicable mostly in grasslands and crop fields), stable isotope measurements allow separation of net CO2 exchange into photosynthetic and soil respiration components, and the evapotranspiration flux into soil evaporation and leaf transpiration. Similar applications in conjunction with eddy correlation techniques (applicable to forests, in addition to grasslands and crop fields) are more demanding, but can potentially be applied in combination with the Keeling plot relationship. The advance and potential in using stable isotope measurements should make their use a standard component in the limited arsenal of ecosystem-scale research tools. Received: 8 July 1999 / Accepted: 10 January 2000  相似文献   

16.
碳(CO2、CH4)、氮(N2O)和水汽(H2O)等温室气体的交换通量是生态系统物质循环的核心, 是地圈-生物圈-大气圈相互作用的纽带。稳定同位素光谱和质谱技术和方法的进步使碳稳定同位素比值(δ 13C)和氧稳定同位素比值(δ 18O)(CO2)、δ 13C (CH4)、氮稳定同位素比值(δ 15N)和δ 18O (N2O)、氢稳定同位素比值(δD)和δ 18O (H2O)的观测成为可能, 与箱式通量观测技术和方法结合可以实现土壤、植物乃至生态系统尺度温室气体及其同位素通量观测研究。该综述以CO2及其δ 13C通量的箱式观测技术和方法为例, 概述了箱式通量观测系统的基本原理及分类, 阐述了系统设计的理论要求和假设, 综述了从野外到室内土壤、植物叶-茎-根以及生态系统尺度箱式通量观测研究的应用进展及问题, 展望了气体分析精度和准确度、观测数据精度和准确度以及观测数据的代表性评价在箱式通量观测研究中的重要性。  相似文献   

17.
基于稳定碳同位素对北京西山侧柏林生态系统呼吸进行定量拆分,能够为该地区森林生态系统碳交换研究奠定基础。本研究采用光谱技术对森林不同高度处CO2浓度和δ13C值进行连续观测,同时采用土壤气室和枝条气室测定地下呼吸和地上呼吸的δ13C值,求得生态系统呼吸各组分比例。结合土壤呼吸通量的测定,实现对生态系呼吸的定量区分。结果表明: 森林生态系统各呼吸组分夜间δ13C值呈波动变化,植物地上呼吸δ13C值变化范围为-31.74‰~-23.33‰,土壤地下呼吸δ13C值变化范围为-32.11‰~-27.74‰,生态系统呼吸δ13C值介于二者之间。夜间平均土壤呼吸通量为1.70 μmol·m-2·s-1,占生态系统总呼吸的47%~91%;夜间地上呼吸量的平均值为0.72 μmol·m-2·s-1,对生态系统总呼吸的贡献较小。由同位素混合模型推算求得的日间呼吸变异大于温度响应模型的结果,其平均值分别为2.31和2.28 μmol·m-2·s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号